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Learning Representations for Matching Fingerprint Variants

by

Anush Sankaran

Abstract

Fingerprint recognition has evolved over the decades, providing innumerable applications for im-
proving the modern day security. Based on the method of capture, fingerprints can be classified
into four variants: inked, live-scan, latent, and fingerphoto. Extensive research has been under-
taken for inked and live-scanned fingerprints. However, research on latent fingerprints and finger-
photo matching is still in nascent stages. These two capture methodologies are semi-controlled or
uncontrolled which pose significant variations in the feature space and therefore warrant further
exploration. The key research challenges involved in building an automated system for latent fin-
gerprint and fingerphoto matching are as follows: (i) lack of publicly available large scale datasets
with diverse variations to motivate reproducible research, (ii) segmentation of foreground regions
from the complex background surface, and (iii) lack of robust feature models to represent the noisy
and partial finger ridge information. Currently, there are limited end-to-end automated systems for
latent fingerprint and fingerphoto matching. This thesis primarily focuses in contributing towards
building a completely automated “lights-out" matching system for these two fingerprint variants.
There are four contributions ranging from creating large databases to designing algorithms for
segmentation and feature extraction for these two fingerprint variants.

First, we create two benchmark datasets with diverse acquisition methods: (i) Multi-sensor Op-
tical and Latent Fingerprint (MOLF) dataset containing 19,200 fingerprint images with large intra-
class and capture variations and (ii) IIIT-D SmartPhone FingerPhoto Dataset version 2 (ISPFD-v2)
containing 16,800 images from 300 classes captured under different environmental setup. The sec-
ond contribution is designing an automated latent fingerprint segmentation algorithm that segments
the fingerprint regions from background by distinguishing between ridge and non-ridge patterns.
Latent fingerprint segmentation is usually affected by the texture of the surface and smudges are
introduced during lifting. The proposed learning-based algorithm is generalizable and can ac-
commodate for unseen texture noises. Further, a novel Spectral Image Validation and Verification
based metric is proposed to measure the effect of the segmentation algorithm. Third, a minutiae
extraction algorithm is proposed as a major contribution towards the “lights-out" latent finger-
print matching. A novel group (or class) sparsity based ℓ2,1 regularization method is proposed
to improve the unsupervised features learnt using stacked autoencoders and Restricted Boltzmann
Machines. Latent fingerprint minutiae extraction is then posed as a binary classification problem to
classify patches as minutia or non-minutia. To the best of our knowledge, this is the first algorithm
in literature for automated minutia extraction from latent fingerprints. The fourth contribution is
towards fingerphoto recognition, in which a novel end-to-end fingerphoto matching algorithm is
proposed that is invariant to the environmental factors such as background noise, illumination vari-
ation, and camera resolution. The ridge-valley pattern present in a fingerphoto in not as distinct as
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a fingerprint image, thus making minutia extraction highly noisy. The matching pipeline consists
of a segmentation technique to extract the fingerphoto region of interest from varying background,
followed by enhancement to neutralize the illumination imbalance and increase the ridge valley
contrast. For feature extraction, a deep scattering network based representation is introduced. The
resultant fingerphoto features are robust and invariant to environmental variations. By addressing
these challenging problems, this thesis improves the understanding and performance of automated
matching systems for forensic latent fingerprints and fingerphoto images.
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Chapter 1

Introduction

Person identification carries significance in all authentication systems ranging from access control

systems to transaction systems. Biometrics is the science of uniquely identifying individuals by

means of one or more biological traits an individual possess. Biometrics has the unique advantage

of “something that you are" instead of “something that you possess" like a key, ID Card or “some-

thing that you know" such as passwords and Personal Identification Number (PIN) [9]. Hence, in

the age of biometric authentication it is not required to carry an authentication device or remember

additional passwords. Some of the most popular and commonly used biometric modalities include

voice, face, fingerprint, iris, and signature.

Fingerprint is one of the most popular and oldest biometric used by mankind. Fingerprint is the

ridges and furrow patterns found in the upper skin layer of fingers. The scientific and systematic

study of human fingerprints is called dermatoglyphics. Usage of fingerprints could be traced back

to the cave-man era [10] where thumb prints were left on the walls along with other carvings to

identify sculptures and family members. As shown in Figure 1-1, plenty of ancient carvings and

written manuscripts have been discovered proving that fingerprint based identification has been in

use for centuries. These traces can be found in most of the civilizations including Babylonian his-

tory [11], Egyption history [12], and Roman history [13] showing the natural tendency of biometric

identification. One of the ancient puzzles in the Indian history, still not demystified by scientists

is Naadi Jothidam [14], the usage of fingerprints to individually identify people through centuries

and predict their future.
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Figure 1-1: Examples of imprints common on ceramic pots from various periods (discovered by
Martin Hloek) [1].

Perhaps the most beautiful and characteristic of all superficial marks are the small furrows

with the intervening ridges and their pores that are disposed in a singularity complex yet even

order on the under surfaces of the hands and the feet

Galton’s definition of fingerprint [15]

Fingerprint has been a commercially successful biometric modality utilized for human iden-

tification. Until recently in 2015, the market for automated fingerprint identification systems and

fingerprint biometric technologies account for the greatest share of the global biometrics market

with a total worth of US $8.49 Billion and is forecast to continue to be the main source of over-

all market revenues from 2015 to 2020 at an estimated Compound Annual Growth Rate (CAGR)

of 21.0% between 2015 and 20201. The growing range of applications and extensive analysis

has paved way for a whole new era in the field of security, and authentication and allowed re-

searchers to explore more variants of fingerprint recognition. Civil applications such as India’s

Aadhaar project [16], Department of Homeland Security’s US-VISIT program [17], now called as

Office of Biometric Identity Management (OBIM), and the UK Border Agency [18] uses rolled or

slap (dap or flat) fingerprints for authentication. Fingerprints can be captured using a variety of

1Automated Fingerprint Identification System Market by Component (Fingerprint Input Modules, Microproces-
sors/Microcontrollers, Displays, Matchers), Search Type (Tenprint Search, Latent Search), Application, and Geogra-
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(a) (b) (c) (d) (e) (f)

Figure 1-2: Sample images showing high intra-class variation introduced during fingerprint cap-
ture. The right index finger is captured from two different subjects using different capture methods.
(a) inked fingerprint, (b)-(d) live scan fingerprints: (b) CrossMatch sensor, (c) Secugen Hamster IV
sensor, (d) Lumidigm multi-spectral sensor, (e) latent fingerprint lifted using black powder dusting
method, and (f) smartphone camera captured fingerphoto image.

capture devices and varying skin conditions introducing a wide range of intra-class variability in

captured fingerprints. Figure 1-2 shows multiple fingerprint images from the same finger, captured

during the same session using different capture mechanisms. It can be observed that fingerprint

data content visually differs a lot based on the capture sensor. On the basis of capture type, finger-

prints can be classified into four types: (i) fingerprints, (ii) live-scan fingerprints (including flat and

rolled fingerprints), (iii) latent fingerprints, and (iv) fingerphoto images. Figure 1-2(a)-(d) show

controlled capture mechanism of fingerprints captured using offline (inked) or live-scan methods

while, Figure 1-2(e) show and Figure 1-2(f) show uncontrolled capture mechanism of fingerprint.

Both rolled and flat fingerprints can be captured using a live-scan device (for ex, optical and capac-

itive sensors) or using off-line methods like inked fingerprints. The third type of fingerprint, called

latent fingerprint, are unintentional reproduction of fingerprints by transfer of materials from the

skin to the surface in contact. The secretions in the surface of the skin such as sweat, amino acids,

proteins, and natural secretions when come in contact with the surface, a friction ridge impression

of skin is deposited on the surface. These impressions depend on the nature of the skin and the

nature of the surface, and are often not easily visible directly to human eyes. Latent fingerprints are

extensively used in forensic applications as common evidences in crime scene applications. The

fourth type, termed as fingerphoto, is a contactless imaging of finger impression using a camera.

A common application of fingerphoto includes use of current day smartphone device or any other

handheld electronic device, to capture a photo of the finger region. Due to the contactless nature

phy - Global Forecast to 2020
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Figure 1-3: Sample latent fingerprint images from the ELFT-EFS database [2].

of the capture, the ridge valley contrast obtained in a fingerphoto image is highly different from a

fingerprint image captured using a live-scan capture device.

Extensive research has been undertaken in recognition of fingerprints captured in a controlled

setup such as offline and live-scan methods [19], [20], [9], [21]. In recent trends, there is a growth

of applications involving uncontrolled capture of fingerprint images. For example in 2014, Safran

introduced a contactless slap fingerprint capturing and recognition system called MorphoWave 2,

to provide border control and access control. Although, the fingerprint is captured in a touch-

less fashion, the overall environment is semi-controlled in nature providing high quality biometric

information. As we progress towards completely uncontrolled applications, such as, forensic ap-

plications (latent fingerprint recognition) and commercial applications (smartphone fingerphoto

recognition), harder research challenges are introduced. The applications require matching live-

scan images with latent fingerprints and fingerphoto images of significantly lower quality and re-

duced information content. There is an indisputable requirement for undertaking research in these

growing applications and create enhanced algorithms to perform fingerprint recognition.

2http://www.morpho.com/en/public-security/smart-borders/
automated-solutions/acquisition-devices/morphowave-desktop
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1.1 Latent Fingerprint Recognition

As shown in Figure 1-3, latent fingerprints vary a lot in quality and information content depending

on the nature of the skin (pressure of contact, handling of the item, presence of a transferable

matrix on the skin) and type of surface. Among the five example latent fingerprints shown in

Figure 1-4, only 2 exemplar fingerprints, (a) and (e), are true matches for the latent prints while the

remaining three are false matches or erroneous identifications. Due to the observable challenges

such as partial and noisy information, latent fingerprint matching can be uncertain and erroneous.

In practical scenarios, when the size of the background exemplar database is large, the uncer-

tainty is further increased. Manual matching in such cases is not scalable both in terms of time and

performance. Automated latent fingerprint matching system could assist the human examination in

performing large number of matches especially under uncertain complex circumstances. However,

a “lights-out" matching system is still under development and has received research importance

in the last few years [22]. As a first step towards building such a system, it is imperative to un-

derstand the difficulties involved in automated latent comparison and provide a perspective of the

state-of-art.

Figure 1-4: An example illustrating the challenge of latent fingerprints. A sample unknown latent
fingerprint along with a pool of known exemplar prints (a)-(e) is shown. Of these five latent
fingerprints, only two are mated with the exemplar fingerprint, while the remaining three are false
matches.
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To encourage the growth in technology and research of automated latent fingerprint matching,

FBI’s Criminal Justice Information Services (CJIS) division awards the title “The Hit of the Year"

since 2007. This award is given to the best solved case by Integrated Automated Fingerprint

Identification System (IAFIS) using latent fingerprints [23]. This award highlights the utility of

latent fingerprints in crime scene investigation and the advancement in latent fingerprint matching

technology. Some of the recent recipients of this award are listed below:

∙ The 2012 “The Hit of the Year" [24] was awarded for solving a 33-year old case of the brutal

murder of Carroll Bonnet. In 1969, the collected evidences (latent fingerprints and palm-

prints) were not enough to make a positive identification due to the lack of automated bio-

metric technologies and the unavailability of large background fingerprint databases. How-

ever in 2009, the same evidences of latent prints were sent to FBI’s IAFIS for matching and

within five hours IAFIS returned a set of possible suspects. Upon manual inspection of the

suspect’s prints, the criminal was identified and found guilty, exactly 33 years after the crime

occurred.

∙ The 2010 “The Hit of the Year" [25] recognized solving of the 1972 San Diego case, where

a man was stabbed more than 50 times and murdered. In 2008, the case was reopened and

the latent fingerprints lifted from the crime scene were matched by FBI’s IAFIS system.

The system returned the top 20 matches and upon further manual investigation, the latent

fingerprint was correctly individualized to the murderer who then pleaded guilty. Once again

the latent fingerprint along with the murderer’s DeoxyriboNucleic Acid (DNA) served as

major evidence in solving a cold murder case.

The above case studies show that latent fingerprints could be used as an informative evidence

in the court of law. It is to be noted that, at many places, latent fingerprint matching is still per-

formed in a manual or semi-automated environment. Also, the improper application of the match-

ing methodology arising from human inconsistency sometimes leads to erroneous results. These

mistakes are compiled in the Innocence project [26], [27] and some case studies are discussed

below:

∙ Shirley Mckie fingerprint case [28] was one of the high profile cases of false accusation.

Shirley Mckie, a Scottish police officer, was wrongly charged with perjury after her finger-
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Figure 1-5: A stepwise, semi-automated procedure for analyzing latent fingerprints obtained from
a crime scene. The dotted cylinders represent the human intervention in the latent fingerprint
identification process.

prints were found at the murder scene of Marion Ross. David Asbury was the prime suspect

as his fingerprints were found on a gift tag in Ross’s home. However, four expert examiners

provided testimony for Shirley’s latent fingerprint match and Shirley was arrested. The only

evidence that was held against her was the latent fingerprint and after months of imprison-

ment she was released without a formal apology.

∙ Another high profile case was related to Madrid bombings in 2004, when Brandon May-

field, an American lawyer was wrongly arrested [29]. The latent fingerprints obtained from

bomb site were matched using an FBI system and it returned a match with Brandon May-

field. After two months of allegation and 14 days of imprisonment, the court released the

lawyer declaring his innocence while FBI announced a public apology. The court of law

documented that, “The incorrect arrest sprang from an erroneous match of latent fingerprint

by FBI’s supercomputer system" [29].

An automated matching technology for latent fingerprints is still in nascent stages and far from

being used in real time environments. With growing needs and applications of latent fingerprint

matching, there are several challenges faced by the forensic and biometric research community for

developing automated systems. Figure 1-5 demonstrates a stepwise procedure for analyzing latent

fingerprints obtained from a crime scene. The procedure consists of capture and preprocessing

(segmentation and quality enhancement), fingerprint feature extraction, and matching (also known

as fingerprint comparison). Fingerprint feature extraction requires ridge quality enhancement of a

given latent print and segmenting the ridge like patterns from a noisy background. Fingerprint spe-

cific level 1, level 2, and level 3 features including extended features are extracted from partially

available print. Feature extraction process results in a fingerprint template which is a representa-

tion to uniquely identify a latent print. The matching process compares such templates to verify
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or identify the individual to whom the latent print belongs. Generally, the features of a latent fin-

gerprint lifted from a crime scene are manually annotated by forensic experts. An IAFIS matches

the annotated latent print with the background (reference) database of ten-prints and provides the

list of top-K probable matches (typically, 𝐾 = 50, 100). The list is then manually verified by

a forensic expert to determine if individualization exists. This procedure involves manual inter-

vention at different stages which is time consuming, laborious, and subjective to variations. To

reduce manual intervention, automating the entire pipeline of latent fingerprint matching would

be effective. Some fully automated crime scene investigation clippings shown in some science

fiction movies and television shows are fully fictional. The development of this technology, its ac-

curacy and speed, as depicted in these episodes are still farfetched and fictitious, though that would

be the ultimate goal to achieve [30]. Some of the research challenges for building a “lights-out"

automated latent fingerprint matching algorithm are shown in Figure 1-6 and described as follows:

∙ Poor quality of the available ridge information as the ridges would be smudgy and imperfect

as shown in Figure 1-6(b). This may be because of the uneven pressure with which the

person holds the object or because of loss in information while lifting the fingerprint.

∙ Availability of partial latent fingerprint ridge information as the entire distal phalanx bone

region may not come in contact with the object and the entire fingerprint might not be de-

posited on the surface, as shown in Figure 1-6(a).

∙ Presence of background noise because the latent fingerprint could be lifted from any surface

that comes in contact with the hand. Hence, the amount of distinguishable ridge information

depends on the background surface characteristics such as type, material, and texture. These

constitute the background noise of the latent fingerprint.

∙ Non-linear distortion in ridge information as the surface from which the latent fingerprint

is lifted need not be always flat and also the skin surface is elastic in nature. The ridge

information in the fingerprint gets distorted or warped in a non-linear manner, with respect

to the shape of the surface, as shown Figure 1-6(c).

In 2010, Dror and Mnookin [31], discussed the risks and challenges in using automated tech-

nologies in forensic fingerprint matching. They conducted studies to understand the implications
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(b) Poor quality of ridges and presence of smudges 
and dusting noise

(a) Partial availability of latent fingerprint information

(c) Presence of non-linear distortion in latent 
fingerprint ridges

Figure 1-6: Challenges in latent fingerprint matching compared with their corresponding full fin-
gerprints.

and consequences of the technology in Automated Fingerprint Identification System (AFIS) based

matching. They put forth the opinion that human cognition has not been effectively transformed

into latent fingerprint matching technologies. As a consequence, the probability that an AFIS will

produce incidental similarities has not been sufficiently investigated or explored. Research in over-

all automated latent fingerprint matching technology is still in its preliminary stages. One of the

fundamental challenges is the lack of large public latent fingerprint database available for moti-

vating research in this problem. Also, the metric primarily used to evaluate both the intermediate

processes and complete matching algorithm is rank-k identification accuracy. Although improving

the matching performance is the eventual aim of an automated matching system, defining some

evaluation metrics to examine the different stages as such may help to devise better techniques in

the future.
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1.2 Smartphone Fingerphoto Recognition

In today’s world, smartphones and handheld devices are omnipresent and they are identified as

one of the fastest spreading technologies [32]. With such a penetrating growth, smartphones have

become an inevitable part of our day-to-day life, holding all our personal data in one place. With

increasing capabilities and power of mobile phones, it’s use in e-commerce applications such as

mobile banking is also increasing. Hence, access control to these devices should be secure, flexi-

ble, and easy-to-use. Traditionally, the access control mechanisms adopted in smartphones include

pins, passwords, and patterns. These lock-screen authentication mechanisms are popularly used

and well explored in existing smartphones. However, these mechanisms are prone to attacks in-

cluding over-the-shoulder copy attack. Therefore, it is important to search for another authentica-

tion mechanism that is accurate and less prone to presentation or copy attack. In the realm of bio-

metrics, other modalities such as fingerprint, face, and iris have been explored [33], [34], [35] along

with biometric gesture based mechanisms in touch screen smartphones [36], [37], [38]. One such

example is BioID facial recognition application (https://mobile.bioid.com/), which is

a multifactor user authentication application using face biometrics. From a usability point of view,

fingerprints have been found to be more adoptable and easier than pin based access control mech-

anism [39].

There are two broad approaches on how finger impression can be used for providing access

control to smartphones: (i) fingerprint based authentication, and (ii) fingerphoto based authentica-

tion. Fingerprint recognition is performed with the use of specially designed fingerprint sensors.

An embedded sensor (external or attached within the display unit) is used to capture the fingerprint,

and minutia based approaches are used for matching. Some of the existing smartphones have inte-

grated fingerprint sensors for authentication [33]. However, adding a capacitive or resistive sensor

to a smartphone further adds to the cost of the device. Fingerphoto3 based authentication, as

shown in Fig. 1-7, utilizes the in-built camera to capture a photo of the finger which can then be

used for authentication. With improvements in technology, every smartphone has a good resolu-

tion rear-camera that is extensively being used. Using smartphone camera for fingerphoto capture

can provide a cost effective method for user authentication. Further, it can be observed that cap-

3Fingerphoto images are hand finger ridge impressions captured directly using a camera in a touchless method.
Fingerprint images are ridge impressions captured using a touch based live-scan sensor.
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Figure 1-7: Sample images illustrating the variations in the ridge patterns and the noise levels be-
tween different types of fingerprint capture mechanisms: (a) live-sccan fingerprints image captured
using Secugen Hamster IV sensor, (b) contactless finger images captured using low resolution we-
bcam under constrained environment [3], and (c) contactless fingerphoto images captured using
three different smartphone cameras - Micromax Canvas Knight, Apple iPhone, and OnePlus One,
respectively.

turing fingerphoto images can happen in any kind of indoor or outdoor environment and varying

illumination conditions such as broad daylight or night time. The various challenges associated

with smartphone camera based fingerphoto authentication can be summarized as follows:
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Figure 1-8: Examples showing minutiae extraction using VeriFinger SDK (one of the state-of-the-
art fingerprint matching systems) on fingerphoto images captured using smart phone camera.

∙ Uncontrolled background: Real-time capture of images with an uncontrolled background

is another important challenge. The distance of the nearest background object can be very

close or very far from the finger, making foreground segmentation an arduous task.

∙ Varying illumination: Fingerphoto can be captured in a controlled indoor illumination or

in an uncontrolled outdoor illumination settings. During outdoor capture, ambient lighting

during day time and night time varies a lot which affects the quality of images. Further, the

presence or absence of flash during capture makes the preprocessing difficult.

∙ Mobile camera: Cameras in different smartphones have varying features such as resolution,

autofocus, and flash Light Emitting Diode (LED), that can affect the quality of the captured

image.

∙ Finger position: Challenges arise due to the orientation change of the finger during capture

along with the varying distance of the finger from the camera.

∙ Feature extraction: Existing minutia extraction approaches may yield very noisy responses

from fingerphoto images [40], as shown in Figure 1-8.
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1.3 Research Contributions

Feature representation is an integral component of any object recognition task. A meaningful and

representative feature can help in obtaining higher recognition/classification accuracies. However,

there is no universal feature extraction algorithm which works best for all types of applications.

Therefore, researchers have proposed several feature representation algorithms. Existing algo-

rithms can be broadly classified into two categories: hand-crafted features and learnt features.

Majority of the literature has focused on hand-crafted features such as Gabor features, local binary

pattern and Scale invariant feature transform. In the last one decade, learning based representation

algorithms have gained widespread attention. These algorithms utilize large amount of training

data to learn discriminatory feature representations that can tolerate noise and variations in data

distribution. Popular examples of such algorithms include dictionary learning and deep learning

(autoencoders, deep belief networks and convolutional neural networks). Further, advancements in

computing technology and Graphics Processing Unit (GPU) technology has instigated research in

learning based representation approaches and almost every domain where abundant data is avail-

able, these approaches are providing state-of-the-art results. In this thesis, we build “lights-out"

algorithms for automated matching of latent fingerprints and fingerphoto images, without human

intervention. We propose novel deep learning based representation models for describing noisy

and highly varying information in these two fingerprint variates.

The first contribution addresses one of the most important challenge of creating a benchmark

dataset and benchmarking the algorithms available for matching the considered fingerprint variates.

The performance of existing algorithms is significantly affected when the fingerprints are captured

with diverse acquisition methods (multi-session, multi-spectral, multi-resolution, with slap, and

with latent fingerprints). The primary challenge in developing a generic and robust fingerprint

matching algorithm is the limited availability of large public datasets that capture such intra-class

diversity. In this thesis, we create and present two datasets: (i) MOLF database of more than

19,200 fingerprint images with high intra-class variations and human annotated markup features,

and (ii) IIIT-D SmartPhone FingerPhoto Dataset version 2 (ISPFD-v2) containing 16,800 images

from 300 classes. The baseline results are established for various matching experiments on these

datasets. The datasets are aimed to drive research in building robust algorithms towards solving the
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problems of latent fingerprint matching and handling intra-class variations in fingerphoto capture.

The second contribution focuses on designing an automated latent fingerprint segmentation

algorithm, which is the first stage in the latent fingerprint recognition pipeline. This research fo-

cuses on automatically segmenting latent fingerprints from any background noise by distinguishing

between ridge and non-ridge patterns. There are three salient features of the proposed segmenta-

tion algorithm: (i) a machine learning paradigm for combining five different categories of features

for automatic latent fingerprint segmentation, (ii) a feature selection technique using modified RE-

LIEF formulation for analyzing the influence of multiple category features on latent fingerprint

segmentation, and (iii) a novel Spectral Image Validation and Verification (SIVV) based metric

to measure the effect of segmentation algorithm without the requirement to perform the entire

matching process. The results on three publicly available datasets demonstrate the efficacy of the

proposed algorithm.

In the third contribution, a novel minutia extraction algorithm is proposed as a major con-

tribution towards designing a “lights-out" latent fingerprint matching algorithm. The performance

of an automated latent fingerprint identification algorithm is limited due to imprecise automated

feature (minutiae) extraction, specifically due to noisy ridge pattern and presence of background

noise. We propose a novel descriptor based minutia detection algorithm for latent fingerprints. A

novel group (or class) sparsity based ℓ2,1 regularization method is proposed to improve the features

learnt using stacked autoencoders and Restricted Boltzmann Machines (RBM). Minutiae extrac-

tion from latent fingerprint is then posed as a binary classification problem to classify the patches as

a minutia or a non-minutia patch. To the best of our knowledge this is the first algorithm available

in the literature for automated minutia extraction from latent fingerprints. Experimental results

show that we achieve more than 90% accuracy in minutia extraction on both, the proposed MOLF

dataset and the existing NIST SD-27 dataset. Using a popular latent fingerprint identification sys-

tem, against a gallery of two million enrolled identities, the proposed minutia extraction algorithm

provides a rank-50 matching accuracy of 69.83% improving the in-built matching performance of

69.21%.

The fourth and last contribution is focused towards fingerphoto matching in which a novel

end-to-end fingerphoto pipeline is proposed that is invariant to the environmental factors. The

ridge-valley pattern present in a fingerphoto is not as distinct as it is present in a fingerprint image,
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thus making minutia extraction highly noisy. The matching pipeline consists of a segmentation

technique to extract the fingerphoto region of interest from varying background, followed by en-

hancement to neutralize the illumination imbalance and increase the ridge valley contrast. To deal

with pose variations, we then introduce a deep scattering network based representation technique

whose resultant texture features are robust and invariant to environmental variations. A random

decision forest based classifier is learnt as a verification system, for classifying a pair of finger-

photo images as match or non-match pair. Results and comparison with existing algorithms on the

ISPFD-v2 database show the efficacy of the proposed algorithm which yields the equal error rates

in the range of 2.1 - 5.2% for different experimental protocols.
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Chapter 2

Literature Survey

Two interesting applications of fingerprints that has attracted some research focus are: (i) latent

fingerprint comparison for crime-scene analysis and (ii) fingerphoto comparison for smartphone

security and customization. Building an end-to-end automated “lights-out" matching system will

be a huge contribution to these application domains. Researchers have identified several important

challenges in automating recognition for the two fingerprint variates: (1) low information content,

(2) presence of background noise and non-linear ridge distortion, (3) different methods of capturing

and lifting approach including the resolution of capture, and (4) lack of public latent fingerprint

databases. In this chapter, we present a comprehensive survey to summarize the growth of the

literature of the two fingerprint variates from a computational and algorithms perspective. The

process of automated fingerprint matching is divided into definite stages and the research gaps in

each of the stages are analyzed.

Figure 2-1: ACE-V methodology for manual matching of latent fingerprint.
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2.1 ACE-V Method For Latent Fingerprint Comparison

It is important to understand how forensic experts examine and match latent fingerprints as it

provides the insight for building an automated system. Human examination of latent fingerprint

is performed using the ACE-V procedure [41]. ACE-V is a structured, systematic guideline for

comparing friction ridge impressions. There are four sequential phases in ACE-V methodology:

Analysis, Comparison, Evaluation, and Verification, as shown in Figure 2-1. After every step,

the knowledge gained thus far is applied in the execution of further stages. An overview of the

procedure is explained below:

1. Analysis: An in-depth friction ridge analysis is performed on a digitally scanned latent

fingerprint. The latent fingerprint is studied for different anatomical aspects, deposition

pressure, distortion due to pressure, and the substrate matrix. Each fingerprint is assigned a

label during this stage - Value for Individualization (VID), Value for Exclusion (VEO), and

No Value (NV). The features of latent fingerprint (all three levels) are marked during this

stage.

2. Comparison: The comparison is a process where visual comparative measurement is made

between the latent and the exemplar fingerprints. The comparison is made in a sequential,

spatial and configurative manner where marked features are compared in the order of level 1,

level 2, and level 3 features. The examiner then compares the unknown print with the known

prints, using the three levels of detail, noting all the similarities and differences between the

prints.

3. Evaluation: The evaluation stage is reached if information between the unknown latent print

and known print is enough to make a decision. One of the three decisions is made during

the evaluation stage: individualization, exclusion, or inconclusive. Individualization occurs

when a latent print is labelled with a known exemplar print, while exclusion occurs when

the latent print cannot be assigned to any known exemplar labels. Inconclusive is when the

examiner is not able to make a decision regarding the unknown latent prints. If needed, in

cases of inconclusive decisions, re-analysis can be performed to check for supplementary

information to further assist comparison.

18



4. Verification: Verification can be thought of as a form of peer review. During verification,

the entire process of Analysis, Comparison, and Evaluation is verified completely by another

examiner to increase the reliability of the process and to ensure repeatability and accuracy

of the conclusion. Verification stage can be performed repeatedly as required.

In 2009, the Scientific Working Group on Friction Ridge Analysis, Study and Technology

(SWGFAST) created a standard for documenting latent fingerprint matching using ACE-V method [50].

According to the standards, only the trained latent fingerprint examiners could perform latent fin-

gerprint matching. Every single match stage had to be documented in a specific format, either

during the evaluation or soon after it has been done. ACE-V methodology is generally accepted

as a scientific standard for comparing latent fingerprints as it tests the hypothesis of the decision

made by the comparison and verification process. In 2005, a Committee to Define Features for

Fingerprint Systems (CDEFFS) [51] was formed as part of the National Institute of Standards and

Technology (NIST) to define standards, quantifiable methods, and regulations for characterizing

the information content of frictional ridge image. By 2011, CDEFFS proposed Extended Feature

Set (EFS) for fingerprints and included them in the ANSI/NIST ITL-1 2011 type-9 record. The

ELFT-EFS (Evaluation #1) demonstrated the performance of minutiae and other features on latent

fingerprints. EFS was also presented as the basis for Latent Inter-operability Transmission Spec-

ifications (LITS) [52]. The evaluation results are still in its preliminary stage and an increased

research focus is set towards designing new and extended features for latent fingerprint match-

ing [22].

2.2 Study of Human Performance for Latent Fingerprint Com-

parison

In 2006, Wertheim et al. [42], studied the performance of human examination using four factors:

the number of correct individualizations made, the number of erroneous individualizations made,

the number of clerical errors made, and the assessments of the latent prints regarding the quantity

and quality of information present. 92 participants with at least one year of experience were used

to make 5861 individualizations. 61 of these matchings were erroneous with 98.95% matching
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Table 2.1: Consequences and implications of human performance in matching latent fingerprints.
It can be clearly shown that the human examiners can be inconsistent by the introduction of bias.
Also, some contradictory results can be obtained from experiments performed in different setup,
further adding to the inconsistency in human performance.

Research Aim of the study #partic-
ipants

#compar-
isons

Results

Wertheim
et al.,
2006 [42]

Effect of Verifica-
tion in ACE-V

16 160 1. Each expert given 8 correct and 2 incorrect
matches to verify.
2. None of the experts were able to remove even
one actual error during verification.

Langenburg,
2009 [43]

Comparison of
Analysis, Com-
parison, and
Evaluation (ACE)
and ACE-V

6 271 1. ACE-V provides higher precision than ACE.
2. All nine false positives detected during verifi-
cation, contradicting the observation in [42].
3. Number of erroneous exclusions doubled dur-
ing verification.

Dror et al.,
2005 [44]

Analyzing the
bias of the exam-
iner

27 2484 1. Examiners are manipulated with emotional
stories and explicit photos.
2. Increased likelihood of making match judge-
ments for ambiguous fingerprints.

Dror et al.,
2006 [45]

Influence of the
examiner’s deci-
sion by a context
(bias)

5 - 1. Previously matched prints were reproduced
to the same examiner with an additional context
saying “no-match".
2. 80% of the examiners provided contradictory
decisions upon the influence of context.
3. Experts are vulnerable to irrelevant and mis-
leading contextual influences.

Dror and
Charlton,
2006 [46]

Consistency of
examiners when
provided addi-
tional information
(bias)

6 48 1. When provided additional information about
the case, only 33.3% of trials were consistent.
2. Major reason for inconsistency could be the
active and dynamic nature of information pro-
cessing by humans.

Hall and
Player,
2008 [47]

Consistency of
examiners with
emotional context
(bias)

70 - 1. Subjectivity of experts on low clarity finger-
prints when provided with an emotional context.
2. Context did not have any effect on the final
judgement of the experts, contradicting the ob-
servation in [45, 46].

Dror et al.,
2011 [48]

Influence of ex-
perts under the
context of target
full prints (bias)

20 200 1. During analysis, a variation of about (2.6 ±
3.5) minutiae was observed.
2. A simple train tool and its feedback could be
used to attune the examiner’s analysis strategies.

Mackenzie
et al.,
2013 [49]

Availability of
non-matching
target prints and
decisions of pre-
vious examiners

24 305 1. Target prints made even low quality latent
prints suitable for comparison.
2. Other experts’ decision highly influenced an
expert in rejected unsuitable latent prints.
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accuracy. The error produced were of two types: 0.034% of error in individualization and 1.01%

of clerical errors. In 2008, Dror and Rosenthal [53], conducted similar experiments to study the

reliability of matches made by experts. Six experts with more than five years experience each

were considered for the experiment. Each of the expert, when provided with the same fingerprints

matched previously, exhibited only 89% reproducibility accuracy. To evaluate the human perfor-

mance for latent fingerprint matching and to quantify the error during manual matching, Ullery et

al. [54, 55] conducted two different studies in 2011 and 2012 respectively. In the first research,

Ullery et al. [54] studied the accuracy and reliability of an expert’s decision in latent fingerprint

analysis. Three key objectives constituted the study:

∙ To study the frequency of error: Error is quantified in terms of both false positive rate and

false negative rate, as both these false classifications are costly during a latent-exemplar

match.

∙ To study the consensus among examiners: While performing the same latent-exemplar

match, if different examiners tend to provide different results, the reliability of such a deci-

sion would be low.

∙ To study the factors affecting the decision of latent examiners that contribute towards vari-

ability in results.

A total of 169 latent print examiners, having a median experience of 10 years and with 83% of

them certified as latent examiners, participated in the study. The database included 356 latent fin-

gerprints from 165 distinct fingers and 484 exemplars. 744 distinct latent-exemplar image pairs

were formed having 520 mated and 224 non-mated pairs. Each of the examiners were randomly

assigned 100 image pairs out of the total pool of 744 pairs. It was observed from these experiments

that the true negative rate was greater than the true positive rate in manual examination. 85% ex-

aminers made at least one false negative error with a false negative rate of 7.5% and a small false

positive rate of 0.1%. By independently verifying the results obtained from other examiners, all

the false positive matches and most of the false negative matches were removed. Also, the exam-

iners frequently differed in deciding whether the fingerprints had enough information for reaching

a conclusion or not. In a recent study [55] in 2012, the same authors studied the repeatability and
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reproducibility of decisions made by latent examiners. Generally latent fingerprint examiners use

their expertise rather than a quantitative standard to analyze latent fingerprints. It is very useful and

interesting to study if latent examiners can repeat their own results independently (intra-examiner

study quantifying repeatability) and also if an examiner’s results can be reproduced by other exam-

iners (inter-examiner study quantifying reproducibility). A total of 72 examiners were reassigned

25 image pairs after an interval of approximately seven months. The repeatability of comparison

decisions was 90% for mated pairs and 85.9% for non-mated pairs. In essence, for a true positive

match, an examiner can repeat his own decision only 90% of the times. However, most of the

inconsistencies in examination resulted in inconclusive decisions. Also, the inter-examiner study

showed that examiners were able to reproduce other’s results only 81% of the time, with only 52%

for “difficult" types of fingerprints. Similar conclusions were drawn by Dror et al. [48], when they

conducted studies for intra and inter consistency among examiners. To remove bias, they used

only latent examiners for their studies rather than forensics or psychology students. Statistically,

the intra-examiner consistency provided more insights to the subjectivity of an examiner.

Multiple studies that have been performed to assess the performance of human experts in

matching latent prints are summarized in Table 2.1. The results of these performance assessments

act as working motivation for an automated matching system. It can be observed that human exam-

ination is inconsistent from multiple scenarios as various experiments yield contradicting results.

Even experienced human examiners can sometimes introduce bias in matching when additional in-

formation such as case story, emotional photographs, and complete prints of the target is provided

to them. Some conclusions derived from the studies performed on human capabilities in matching

latent fingerprints are summarized below:

∙ Humans set hard thresholds and are very cautious about making a false positive match and

end up marking false negative classification mistakes. Therefore, in manual matching very

low false positive rates (0.1%) and high true negative rates can be observed. Often the

accounted errors are false negative classification mistakes.

∙ Manual analysis of complex latent prints and comparison with a large exemplar database is

challenging.
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Figure 2-2: The overall schema of an automated latent fingerprint matching system.

2.3 Automated Latent Fingerprint Recognition System

The primary aim of an automated latent fingerprint recognition system is to minimize the human

intervention as much as possible. It also optimizes the time required for comparison and improves

the throughput for end-to-end comparison. For example, the current FBI’s IAFIS system takes an

average time of 1 hour, 53 minutes and 12 seconds for matching a latent fingerprint image against

the enrolled gallery of 73.1 million fingerprints [56]. Therefore, an automated latent fingerprint

matching system is expected to provide quicker, better and more deterministic results than manual

matching. As shown in Figure 2-2, the overall process of an automated matching system can be

broken into a set of sequential stages: (1) latent fingerprint preprocessing including quality as-

sessment and segmentation, (2) feature extraction, and (3) feature comparison. The input to an

automated system is a digitally scanned or camera captured latent print, that is obtained from a

crime scene. Different techniques for latent fingerprint detection, lifting, and capture is an exhaus-

tively studied topics in latent fingerprints [57].

2.3.1 Latent Fingerprint Segmentation

Segmentation involves separating foreground latent fingerprint from any kind of background noise.

Latent fingerprint segmentation is a challenging task due to the lack of discrimination in estimat-

ing the relevant information and ill-posed boundary of the foreground. In the context of latent

fingerprints, the definition of segmentation can be perceived in different ways. Latent fingerprint
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Figure 2-3: Sample latent fingerprints demonstrating different ways of segmenting a latent finger-
print image. (a) original latent fingerprint image, (b) segmentation of the outline of the entire latent
fingerprint, and (c) segmentation of the outline of latent fingerprint (yellow full lines) and marking
the structured noise (blue dashed lines) and smudgy region (red dotted lines) overlapping with the
print.

segmentation may be defined as marking out only the outline boundary, as shown in Figure 2-3(b),

or marking out the boundary including the smudges and structured noises inside the boundary,

as shown in Figure 2-3(c). Since segmentation is the first step in latent fingerprint matching, the

motive of segmentation should be to mark all the foreground regions accurately, while allowing as

minimum background as possible.

Even though very few researchers have worked on latent fingerprint segmentation, there are

some well understood and accepted challenges.

∙ Latent fingerprints can be lifted from a variety of surfaces including glass, wood, paper,

and metal. The extensive list of surfaces from where latent fingerprints can be lifted vary

significantly in texture, pattern, and color. Therefore, background modeling or prediction is

a challenging task.

∙ Due to the variations in pressure applied while depositing and errors while lifting, the ridge

information present in a lifted latent fingerprint can be of very poor quality and therefore
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Figure 2-4: Example latent fingerprint images from NIST SD-27 showcasing two specific chal-
lenges in latent fingerprint segmentation. (a) Overlapped fingerprints result in overlapped ridge
information (multiple touches in the same location) making it difficult to determine the ridge flow
of either of the fingerprints, and (b) the presence of structured noise in latent fingerprint back-
ground that often resemble ridge like patterns.

Table 2.2: Review of existing latent fingerprint segmentation techniques.

Paper Methodology Database Results Other metrics
Karimi &
Kuo [58],
2008

Variation in ridge
frequency and gra-
dient

2 images from NIST
SD-27

-NA- -NA-

Short et
al. [59],
2011

Cross-correlation
strength

NIST SD-27
Equal Error Rate of
33.8%

-NA-

Choi et
al. [6],
2012

Orientation and
frequency tensor

NIST SD-27 and
WVU DB with ex-
tended gallery of
31997 images

Rank-1 accuracy of
16.28% on NIST
SD-27 and 35.19%
on WVU DB

Missed Detec-
tion Rate, False
Detection Rate

Zhang et
al [7], 2013

Adaptive di-
rectional total
variational model

NIST SD-27 with
extended gallery of
27258 images

Rank-1 accuracy of
less than 3%

Missed Detection
Rate, False Detec-
tion Rate, Feature
extraction

Cao et
al. [60],
2014

A coarse and fine
structured ridge
dictionary

NIST SD-27 and
WVU DB with ex-
tended gallery of
31997 images

Rank-1 accuracy of
61.24% on NIST
SD-27 and 70.16%
on WVU DB

-NA-

Yang et
al. [61],
2015

Detection and ori-
entation field based
segmentation

NIST SD-27 with
extended gallery of
27000 images

Rank-1 accuracy of
38%

Missed Detec-
tion Rate, False
Detection Rate

Ezeobiejesi
and
Bhanu [62],
2016

Extreme machine
learning classi-
fier using fractal
dimension features

NIST SD-27, WVU
DB, IIIT-D DB

Total Empirical Er-
ror (TER) of 13.96
on NIST SD-27,
12.60 on WVU DB,
and 8.23 on IIIT-D
DB

-NA-
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Figure 2-5: Sample latent fingerprints from the NIST SD-27 fingerprint database [4] showing seg-
mentation results. (a) Original latent fingerprint images, (b) manually segmented output with just
a bounding box around the fingerprint region, (c) manually segmented output with exact boundary
around the fingerprint region, (d) manually segmented output with only the useful ridge informa-
tion rejecting all the smudgy and noisy (non-informative) regions, (e) segmented output from nfseg
module of NBIS [5], and (f) segmented output from Choi et al. algorithm [6] (implemented by the
authors).

assessing the quality of ridge patterns contained in a latent print is also challenging.

∙ As shown in Figure 2-4(a), two or more latent fingerprints may be overlapped during lifting,

deposited on top of each other appearing as overlapped ridges when those prints are lifted.

Estimating the orientation of the latent fingerprints independently and segmenting them is

also a hard problem. As shown in Figure 2-4(b), structured noise such as arch, lines, and

characters very often resemble ridge patterns and pose a challenge in differentiating between

ridge and non-ridge patterns.

Some latent fingerprint segmentation approaches have been developed in literature which are sum-

marized in Table 2.2. Karimi and Kuo [58] proposed the first automated approach of latent fin-

gerprint segmentation in 2008. They computed the orientation and frequency components at local

windows to estimate the regional uniformity property of the fingerprint ridge patterns. A reliability

measure is computed using inter-ridge distance for segmenting the foreground image. The results

were demonstrated using two images from the NIST SD-27 database [4]. In 2011, Short et al. [59]

proposed a segmentation technique by preprocessing latent fingerprints and cross-correlating it

with an ideal template of ridge patterns. Based on the correlation strength, the regions were
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classified as foreground and background. An EER of 33.8% was reported on the NIST SD-27

database. In 2012, Zhang et al. [63] identified six different patterns of structural noises that could

be found in the background of a latent fingerprint - lines, arches, characters, stains, speckles, and

others. The authors further proposed a preliminary approach using total variation TV-L1 model

to remove the structured patterns and noise in the background. The model is made adaptive by

dynamically adjusting the fidelity coefficient that separates the texture patterns of the foreground

with the background. The proposed model was observed to perform efficiently for three sample

images from the NIST SD-27 latent fingerprint database. The authors later in 2012, proposed a

Directional Total Variational (DTV) model [64] which is a variant of TV-L2 model for identifying

ridge patterns. The proposed DTV model is suitable for decomposing textures with orientation

patterns. The extracted orientation vector controls the separation extent of foreground with back-

ground. The working of the proposed model is visually demonstrated using three sample images

from NIST SD-27. More recently, Choi et al. [6] proposed a two step segmentation process using

both orientation tensor and frequency tensor (local fourier analysis). The orientation tensor was

applied to eliminate structured noise in the background while the local fourier analysis detected

ridge like patterns in a local window. The final segmentation output was obtained by intersection

of segmented masks obtained from the individual tensors. Experimental results showed the rank-1

identification accuracy of 16.28% on the NIST SD-27 database and 35.19% on the WVU database.

It was observed that the algorithm failed to segment some low contrast latent fingerprints from the

WVU database [65].

The problem of segmentation becomes even more challenging when there are more than one

latent fingerprint impressions overlapping partially that need to be separated individually. In 2012,

Zhao and Jain [66] proposed a model based approach for segmenting overlapping fingerprints

using relaxation labelling algorithm. By mathematically modeling the fingerprint orientation field,

the authors attempted to enhance the orientation of the overlapping fingerprints especially for low

quality fingerprint images. Two different databases were created for experiments: an overlapping

fingerprint database and a simulated latent fingerprint overlapping database. The ground truth

orientation field of the overlapping fingerprints was manually marked by the experts and the results

showed improvement for both the databases. This research work also pointed out the absence of

a database with overlapping latent fingerprints to encourage further research in this area. Feng et
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al. [67], further improvised this approach for two specific cases: (i) the mated template fingerprint

for one of the overlapping fingerprint is available and (ii) both of the overlapping fingerprints are

from the same finger. Specific constraints were added to the constraint based relaxation labelling

algorithm to address each of these cases specifically. Experiments were performed in two publicly

available database: a simulated ten-print overlapping database and a latent fingerprint overlap

database. The proposed algorithm approximately showed a rank-1 identification of 85% on latent

fingerprint database and 96% on simulated database. Recently, Schott et al. [68] suggested the

usage of a latent fingerprint aging feature called Binary Pixel to separate overlapping latent prints.

Among the overlapping fingerprints, the age estimation assessed the sequence of latent fingerprint

deposition, thereby differentiating the prints. Experimental results showed a success rate of 70%,

irrespective of the initial age of either of the print.

An automated latent fingerprint segmentation system is still farfetched from being confidently

used in an AFIS. Figure 2-5 shows two sample latent fingerprint images along with its expected

manual segmented outputs and the output from nfseg module of NBIS [5] and Choi et al.’s algo-

rithm [6] (implemented by the authors). As it can be visually observed, one of the state-of-art

algorithms for latent fingerprint segmentation misses out on valid foreground regions in many

cases. This shows that there is a scope for further research and improvement in latent fingerprint

segmentation. Also, there is no standard definition for the expected output of the segmentation

stage in AFIS. As shown in Figure 2-5, the segmentation can be perceived and performed in dif-

ferent ways. In future, a well justified and standard way of segmenting latent fingerprints should

be defined such that automated algorithms can work towards that direction.

2.3.2 Latent Fingerprint Quality Assessment and Enhancement

Given a segmented latent fingerprint, a quality assessment has to be made to check if the segmented

impression has minimum information to make a valid confident match. Latent fingerprints that

do not qualify for minimum information content should be discarded as Failure To Enroll (FTE)

or Failure To Register (FTR) fingerprints [9] and they generally do not affect the performance

accuracy of the matching system. Quality enhancement assists the feature extraction process by

removing the noise and improving the clarity of a latent fingerprint image. Thus, latent fingerprint

28



Figure 2-6: Sample latent fingerprints from NIST SD-27 enhanced using VeriFinger SDK 6.0.

enhancement increases the confidence of the features to be extracted. Very few researchers have

worked on a quality assessment and improvement of latent fingerprints. Figure 2-6 shows a few

latent fingerprints enhanced using VeriFinger SDK 6.0, one of the popular commercial systems

used for ten-print matching. It can be observed that the latent enhancement using VeriFinger

fails because of the incorrect orientation field estimation of ridge patterns. Some of these general

challenges associated with latent fingerprint quality enhancement are summarized below:

∙ The partial availability of fingerprint ridge patterns is a challenge for ridge quality assess-

ment. Segmentation error affects the performance of quality enhancement.

∙ Structured noise that resembles ridge patterns such as brush strokes, circular markings, and

characters sometimes are enhanced better than the ridge information itself. Also, the ridge

information is lost and noise is enhanced when the structured noise overlaps with ridge

information. Some contemplating textures in the background similar to ridge patterns are

enhanced thereby distorting the actual fingerprint, as shown in Figure 2-6.

∙ Parameterized enhancement algorithms face challenges in fine tuning their parameters as the

environment from which latent fingerprints can be lifted is not limited.

Hicklin [69] in 2007 performed the first study on latent fingerprint quality assessment by com-

paring the confidence of various levels of fingerprint features towards quality estimation with the
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results from human experts. The confidence of matching latent fingerprints using level 1 features

was much higher than using level 2 or level 3 features. In 2011, NIST provided the complete

set of experimental features for NFIQ 2.0 [70], which is the quality metric for latent fingerprints.

Olsen et al. [71] in 2012 suggested the use of Gabor filters as a candidate quality feature along

with other features for NFIQ 2.0. However, they did not publish the results on latent fingerprints

and hence its effectiveness in latent fingerprints is still unknown. Yoon et al. [72] provided a met-

ric for latent fingerprint quality assessment. Following theACE-V standard for deciding the value

of latent fingerprints at analysis level, the authors performed a local ridge analysis to analyze the

clarity of latent fingerprints. The ridge clarity maps, combined with the number of minutiae ex-

tracted, acted as a good matching dependent predictor of quality latent fingerprints. Using this

quality measure, a two-class problem was formulated to estimate if the latent fingerprint is a VID

(Value of Individualization) or not-VID. On a combined database of NIST SD-27 [4] and WVU

database [73] with manually extracted minutiae, the authors reported a classification accuracy of

88%. In 2010, Yoon et al. [74] proposed a semi-automated method for enhancing the ridge infor-

mation using the estimated orientation image. The proposed method utilizes the skeleton image

extracted using VeriFinger SDK to find a coarse orientation map. The coarse orientation field

regularization is performed using the “zero-pole model" with a higher order polynomial function.

Region of Interest (ROI) and singular points are manually annotated for latent fingerprints and

the experiments are conducted using the NIST SD-27 database. The estimated orientation field

monotonically increased the matching accuracy over all the quality bins of latent fingerprints. In

2011, Yoon et al. [75], proposed a more robust orientation field estimation technique for latent

fingerprint enhancement. For every small non-overlapping patch of fingerprint, a set of coarse

orientation fields are initially computed using the Short-Time Fourier Transform (STFT). A set of

hypothesized orientation fields using randomized RANSAC based hypothesize-and-test paradigm

are generated. Non-overlapping random orientation patches are chosen and tested for orientation

consistency based on predefined thresholds. The best-fit regularized orientation field parameter is

chosen to enhance the latent fingerprints. Experiments are performed using VeriFinger 4.2 SDK

on latent fingerprints from NIST SD-27 against a combined gallery of NIST SD-27 and NIST

14 databases. The enhancement algorithm shows the rank-1 identification accuracy improvement

from 12% to 26%. In 2012, Feng et al. [76], inspired from spelling correction methods employed
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in natural language processing, proposed an approach that makes use of the prior knowledge of

ridge structure in fingerprint enhancement. A dictionary of reference orientation patches is created

using ground truth orientation field and a compatibility constraint between neighboring orientation

patches is also applied. Orientation field estimation for latent fingerprint is then posed as an en-

ergy minimization problem, solved using a loopy belief network. The average estimation error of

orientation (in degrees) is used as the performance metric and is found to be at least 18.44∘ for the

proposed network. More recently, Cao et al [60] presented a coarse to fine, dictionary based ridge

flow enhancement technique. A dictionary of ridge structures are learnt from high quality finger-

print images. For any given latent print, the background noise is removed by decomposing using

a TV-L1 model. The low quality latent print is then reconstructed using the closest similar dic-

tionary elements. Orientation and frequency parameters for enhancement are estimated from the

reconstructed fingerprint. Experimental results of the proposed algorithm when fused with a Com-

merical Off-The-Shelf (COTS) matcher, showed the rank-1 of abut 75% in NIST SD-27 database

and about 78% on WVU database. Cao et al [77], further proposed an automated algorithm for

latent fingerprint value determination as VID, VEO, or NV. Their feature fusion approach pro-

vided abot 86% classification accuracy on the combined NIST SD-27 and WVU latent fingerprint

dataset.

The term quality has different meaning in biometrics and forensic science communities. In

2013, Hicklin et al. [78] distinguished the concepts of clarity and quality, though the latent print

examiners tend to use them synonymously. Clarity is defined as the ability to discern the presence

or absence of feature attributes while quality depends on the number of features present. Hence,

high clarity regions would be of low quality, if only very few features are available. A prototype

of GUI based Latent Quality Assessment Software (LQAS) was created to manually annotate the

local clarity regions. The color coded clarity map is visually informative for manual experts and

ensures rapid analysis of local regions. The study on local clarity annotation and value determina-

tion concluded that there is a strong inter-examiner consistency in clarity boundary assessment but

different examiners tend to vary while assigning a clarity value to different regions. Sankaran et

al. [79] automated the clarity extraction using a 2-D structure tensor and provided a three bin color

map representation. They proposed local orientation fitness as a quality metric and clarity maps

to better estimate the quality. Experimental results on the NIST SD-27 database showed that the
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quality thus extracted, better predicted the matching performance of latent finger print images.

Latent fingerprint quality assessment and enhancement is a challenging open-ended problem.

Extracting orientation field from latent fingerprint requires manual input in terms of singular points

and Region of Interest (ROI). There is a huge scope of improvement by developing improved

automated techniques for singular point detection as well as segmentation. Quality assessment can

either refer to image capture quality or biometric quality which a direct measure of the amount of

useful information in a image [80]. In literature, the available information is measured in terms

of the number of confident minutiae extracted. However, the information depends on many other

factors such as the size of foreground information available, the region of the finger’s surface that

is deposited, and the clarity of fingerprint ridges. Extracting these features, even though would

be challenging, could provide an effective robust quality measure. Also, quality assessment can

be made matcher independent or matcher dependent, as different matchers can produce different

results for the same input image. Selection of the appropriate metric depends on the application

as well as the algorithm used. Quality can be enhanced by not only improving the confidence of

the features to be extracted but also by predicting the missing features in latent fingerprints. The

latter technique increases the amount of information available for matching and can be given more

focus in the future. Also the performance of the quality enhancement process is evaluated by the

improvement in matching performance, which in turn depends on many other factors. Hence, some

metrics have to be developed to evaluate the performance of quality enhancement as such.

2.3.3 Latent Fingerprint Feature Extraction

Features are the most succinct and precise representation of any data. A fingerprint, basically

assumed to be highly variable, needs a very robust feature representation to maintain the unique-

ness. Broadly, fingerprint features can be classified into three categories - overall ridge flow pattern

(level 1), minutia points (level 2), and extended features (level 3) such as dots, pores, and incipient

ridges [9].

1. Level 1: The overall ridge flow pattern in a fingerprint is considered as level 1 features. The

ridges often flow smoothly, in parallel, except at a few points which are distinctively marked

by high curvature or sudden termination of ridges. These points of ridge flow abnormality
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are called singular points. As shown in Figure 2-7(a), there are two types of abnormalities

in ridge flow pattern - cores and deltas. Henry [81] defined a core point as the “north most

point in the inner most ridge line". Based on the occurrence and position of the core and

delta points, fingerprints can be broadly classified into five categories: whorl, loop (left and

right), arch, and tented arch. To determine the ridge pattern type and capture the singular

points, fingerprint images should be captured at least at 300 PPI resolution.

2. Level 2: The minutia constitutes level 2 features. Minutiae are local features of a fingerprint

and represent some discontinuity in the flow of ridges. The ridge flow consists of two types

of discontinuities - ridge bifurcation and ridge ending, as shown in Figure 2-7(a). Ridge bi-

furcations are points where a single ridge splits and continues as two different ridges whereas

ridge endings are sudden spontaneous ridge terminations. Other general discontinuities in

ridge flow are lakes, islands, independent ridges, spurs, and crossovers. Every minutia is

represented as <𝑥, 𝑦, 𝜃> where (𝑥, 𝑦) refers to the 2-D spatial location of the minutia and 𝜃

refers to the angular orientation of the ridge flow at (𝑥, 𝑦). To extract minutiae, the fingerprint

image must be captured at a resolution of at least 500 PPI.

3. Level 3: Level 3 features are fine and intricate features of fingerprint ridges [82–84]. Fea-

tures such as pores, dots, incipient ridges, ridge width, shape, edge contour, scars, breaks,

and creases can be grouped into level 3 features, some of which are shown in Figure 2-7

(b). Although level 3 features are more distinctive in nature, not many automatic feature

extraction algorithms exist due to the challenging nature of the problem and lack of higher

resolution fingerprint image dataset.

In case of low information content and poor quality of ridge information such as in latent fin-

gerprint, extracting these features is a very challenging task. It is noteworthy to observe that for

latent fingerprints, even manual annotation of features can be an arduous and erroneous process.

Some of the recent techniques developed to address these challenges are summarized in Table 2.3.

In an attempt to perform fingerprint indexing using level 1 features, Feng and Jain [86] in 2008,

proposed a background database filtering method. Filtering was performed in three cascaded stages

using three different features - pattern type, singularity point similarity, and orientation field simi-

larity. In their experimental study, 258 latent fingerprint images from NIST SD-27 were matched
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Figure 2-7: Different types of features extracted from fingerprint. (a) shows level 1 and level 2
features and (b) shows level 3 features.

Figure 2-8: Sample latent fingerprints from NIST SD-27 showing spurious minutiae extracted by
(a) NBIS and (b) VeriFinger 6.0 SDK.

against a combined database of 10, 258 fingerprint images from NIST-4, NIST-14, and NIST SD-

27 databases. The penetration rate of 39% was reported with an accuracy of 97.3%. It was also

observed that the rank-1 identification accuracy increased from 70.9% to 73.3%. To automatically

predict level 1 features, Su and Srihari [87] in 2010, proposed core point detection of latent finger-

prints using Gaussian process. The prior joint Gaussian distribution of singular points was learnt

and regression was applied to predict the location of singular points. The results were compared

with the standard poincare index method [88]. The Gaussian process models were trained using
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Table 2.3: A comparison of different descriptors used in the literature to describe latent fingerprint
ridge structure.

Paper Problem ad-
dressed

Descriptor used Remarks

Paulino et al. [65],
2013

Ridge enhance-
ment

Minutiae Cylinder Code
(MCC)

Manual annotation of
minutiae

Paulino et al. [85],
2013

Descriptor
indexing

Minutiae triplets, Binary
MCC

Manual annotation of
minutiae

Cao et al. [60], 2014 Ridge enhance-
ment

Sparse dictionary learning Automated segmentation
of latent fingerprint

Proposed approach Minutiae detec-
tion

Sparse coding using
Stacked Denoising Sparse
AutoEncoder (SDSAE)

Manual segmentation of
latent fingerprint

fingerprints from the NIST-4 database and tested on the NIST SD-27 database. Ground truth orien-

tation field was obtained by simple gradient method and the ground truth core points were marked

manually. The proposed method produced a core point prediction accuracy of 84.5% compared to

the poincare index method having 69% accuracy.

Automatic extraction of level 2 features has been attempted on latent fingerprints with very

little success. To better understand the performance of minutiae in actual scenarios, Puertas et

al. [89], in 2010, compared manual minutiae extraction with automatic minutiae extraction using

COTS. The matching performance of latent fingerprints with plain and rolled fingerprints was also

compared. A database was created having latent, plain and rolled fingerprint of 50 subjects with

an extended gallery of 2.5 million ten-print cards from the Department of Spanish Guardia Civil.

The automated system marked, on an average, 31.2 minutiae in the latent prints while the experts

marked an average of 25.2 minutiae. Four different experimental scenarios were adopted: (1) using

manually annotated minutiae, (2) with automatically extracted minutiae, (3) using top 12 manually

annotated minutiae based on confidence, and (4) using top 8 manually annotated minutiae, based

on confidence. The performance accuracy of latent fingerprint matching decreased in the same

order specified. The authors also mentioned that the quality assessment of latent fingerprints is an

open problem that needs to be addressed. In 2010, Paulino et al. [90] attempted to fuse manually

marked and automatically extracted minutiae for latent fingerprint matching. Latent fingerprints

were enhanced by orientation field reconstruction using the extracted minutiae. The matching per-
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formance of these enhanced latent fingerprints was found comparable with the manually marked la-

tent fingerprints. To further improve the performance of manual annotation, different levels of rank

and match score fusion were performed. Experiments were performed using latent fingerprints in

NIST SD-27 with a combined background database of NIST SD-27 and NIST-14 databases. It

was observed that highest rank and boosted-max score fusion performs better than all other fusion

methods. In 2011, Jain and Feng [22] provided a complete analysis of latent fingerprint match-

ing with increased number of features and improved matching methods. The feature set extracted

from fingerprints were singular points (core and delta), ridge flow map, ridge wavelength map,

ridge quality map, fingerprint skeleton, minutiae points, ridge correspondence, and level 3 features

(dots, incipient ridges and pores). Features were manually annotated in latent fingerprints. Both

local and global matching methods were performed with and without using the additional level 3

features, to study the effect of these additional features. Extensive experiments were performed

using 1000ppi latent fingerprints from NIST SD-27(A) with an extended background database of

NIST SD-4, NIST SD-14, and NIST SD-27(A). The results show that the extended features were

useful and may be utilized only when minutiae extraction is poor. Rank-1 identification accuracy

increased from 34.9%, when only minutiae features were used, to 74% when all the features were

used. In 2012, Paulino et al. [65] proposed a minutiae alignment technique for latent fingerprints

using local descriptor based Hough transform. Minutiae were manually annotated for latent finger-

prints while an automated fingerprint feature extractor was used to extract minutiae for background

rolled fingerprints. MCC [91] was used as the local descriptor for minutiae. Minutiae correspon-

dences were established using a simple bounding box algorithm and euclidean distance measure.

Experiments were conducted by matching latent fingerprints in the NIST SD-27 database against

the combined gallery of NIST SD-27 and NIST-14 using a normalized similarity score metric. The

normalized match scores showed a rank-1 identification accuracy of 57.4% when the proposed

matcher was combined with the COTS matcher. In 2008, Vatsa et al., [92] proposed a method to

combine pore and ridge features with minutiae for improved verification. Nine different indexing

measures were proposed to combine level 1, level 2, and level 3 features. Redundant Discrete

Wavelet Transform (RDWT) based local quality analysis is performed. The experiments were per-

formed using 150 high resolution latent fingerprints having level 1, level 2, and level 3 features

manually annotated. Quality based likelihood ratio provided a high rank 20 identification accuracy
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Figure 2-9: Sample images showing high intra-class variation in latent fingerprints captured from
the same finger. Images obtained from the ELFT-EFS public challenge dataset [2].

of 95.35%.

The ultimate aim of latent fingerprint research is to develop a “lights-out" system that can au-

tomatically extract valid features from a given latent fingerprint. Figure 2-8 shows many spurious

minutiae extracted using NBIS and VeriFinger 6.0 SDK. In general, it is observed and accepted

that the standard algorithms and procedures practiced for live-scan fingerprint comparison do not

work on latent fingerprints effectively. The problem of latent fingerprint feature extraction can be

viewed as a different problem, rather than an extension or a variation of ten-print fingerprint feature

extraction. Though minutiae are the most commonly and widely accepted fingerprint features, in

case of latent fingerprints, minutiae based representation may not be distinctive. Some additional

properties that might be considered for latent fingerprint feature extraction are as follows:

∙ Detecting the size of the informative region available in a latent fingerprint can enable us to

choose an appropriate technique for comparison.

∙ Some regions of a fingerprint surface are more informative than the others. Automatic de-

tection of the actual fingerprint region available in the lifted print may provide a better un-

derstanding of the actual amount of information available to us.

∙ The availability of singular points in ridge flow in the lifted fingerprint can provide us ad-

ditional information. The ridge flow and minutiae extracted around singular points provide

distinctive information and are more reliable.
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2.3.4 Latent Fingerprint Comparison

The aim of latent fingerprint matching process is to find a similarity or distance score between

the two features of gallery and probe latent fingerprints. The matching process should attempt

to increase the inter-class variations while decreasing the intra-class variations. Figure 2-9 shows

multiple latent fingerprints of the same finger exhibiting extreme intra-class variations. Latent

fingerprint matching becomes a complex problem as it has to provide a valid match with just the

available limited and noisy features.

In an attempt to perform fingerprint indexing using level 1 features, Feng and Jain [86] in

2008 proposed a background database filtering method. Filtering was performed in three cascaded

stages using three different features - pattern type, singularity point similarity, and orientation

field similarity. In their experimental study, 258 latent fingerprint images from NIST SD-27 were

matched against a combined database of 10, 258 fingerprint images from NIST-4, NIST-14, and

NIST SD-27 databases. The penetration rate of 39% was reported with an accuracy of 97.3%. It

was also observed that the rank-1 identification accuracy increased from 70.9% to 73.3%. Jain

et al. [93] proposed a preliminary automatic latent fingerprint matching algorithm in 2008. Fea-

tures such as minutia, ridge flow, quality map, and orientation field were manually annotated for

latent fingerprint matching. The singular points were detected automatically for latent fingerprints

and were shown to work better than the poincare index method for latent fingerprints. Two dif-

ferent feature matching strategies were performed: (i) Local minutiae matching and (ii) Global

minutiae matching. In local minutiae matching, two different descriptors were used to represent

the local minutiae: orientation based descriptor and neighborhood minutiae based descriptor. In

global minutia matching, a greedy approach was used, where only the top five matches of the entire

minutiae set were considered. Weighted sum score fusion of orientation based and neighborhood

minutiae based matching was performed. The experiments were performed using latent finger-

prints from NIST SD-27 against a combined gallery of rolled fingerprints from NIST SD-27 and

NIST 4. An increased rank-1 accuracy of 79.5% and a rank-20 accuracy of 93.4% were obtained

for the proposed matching method. Feng et al. [94], in 2009 proposed a method to match latent

fingerprints against the corresponding fusion of flat and rolled fingerprints. The features used were

minutiae, quality map, and orientation estimation. Three levels of fusion were separately per-
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formed - rank level, match score level, and feature level. Rank level fusion was performed using

the highest rank method and Borda count method. Match score level fusion was performed using

min, max, sum, product and boosted-max score fusion methods. In the boosted-max match score

fusion method, the scores corresponding to genuine matches were boosted by a factor because

the spatial transformation in genuine matches was consistent. For feature level fusion between

flat and rolled fingerprints, the features were considered from rolled fingerprints in overlapping

regions while in non-overlapping regions, features from corresponding image were considered.

The experiments performed using the ELFT-EFS database showed that boosted-max provided the

maximum rank-1 identification accuracy of 83% compared to 57.8% for flat and 70.4% for rolled

fingerprints. Dvornychenko [95] performed fusion for latent fingerprint matching in three different

strategies: (i) fusion of the output of two different classifiers with same feature set, (ii) fusion of

the output of same classifier with two different feature sets, and (iii) fusion of the output of two

different classifiers with two different feature sets by a specific combination strategy. Experimental

results showed that a rank-1 performance boost of 6−15% is obtained when multiple features were

given to the same classifier and fused. Recently in 2012, Mikaelyan and Bigun [96], established

the ground truth of minutiae level correspondences for the publicly available latent fingerprint

database NIST SD-27. The authors performed verification tests using two different publicly avail-

able matchers, Bozorth3 [5] and k-plet [97], yielding an EER of 36% and 40% respectively. The

results suggest that both the matchers have poor ability to separate genuine and impostor matches in

latent versus ten-print matching experiment. However, in an identification setup, at higher ranks,

k-plet provided better accuracy than bozorth3 matcher. Kargel et al. [98] in 2012, performed a

comparative study of existing exemplar fingerprint matching systems for latent fingerprints. Eval-

uation was performed to understand the usability of the existing exemplar matching systems and

exemplar quality metrics for latent fingerprints. A multi-variate latent fingerprint database, having

480 latent impressions was created. The experiments were performed on four open source fin-

gerprint matching systems: Source-AFIS SDK [99], FVS SDK [100], NBIS SDK [5], Biometrics

SDK [101], and COTS Innovatrics IDKit PC SDK [102]. The overall analysis showed that none

of the existing exemplar systems used in this experiment could be used as a valid and confident

matching system for latent fingerprint matching. It was also observed that the standard quality

assessment metric NFIQ in NBIS, was not an efficient quality measure for latent fingerprints. In
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2013, Liu et al [103] proposed an automated feedback mechanism to refine the set of features that

are similar between the rolled and latent fingerprints. Using this feedback mechanism the rank

list is re-ordered to achieve improved performance. The experiments performed using latent fin-

gerprints from the NIST SD-27 and WVU databases with an extended gallery using NIST SD-14

show an average improvement of about 10%. Vatsa et al. [104] used the multiple latent fingerprints

deposited together while holding an object (called simultaneous latent fingerprints) to increase the

data available during comparison. In the proposed two step semi-automated procedure, simul-

taneity of latent fingerprints was first established using geometrical features and minutiae features

from multiple prints are fused using likelihood ratio and 2𝜈-Support Vector Machine (SVM). On

a database of 300 simultaneous latent prints against a gallery of 2250 tenprints, it was observed

that the use of simultaneous prints improved the rank-1 identification accuracy by 37%. Sankaran

et al. [105] created a public database for simultaneous latent fingerprint matching called IIITD Si-

multaneous Latent Fingerprint (IIITD-SLF) database having almost 360 simultaneous impressions

from 60 classes. A completely automated, hierarchical multi-level fusion approach was proposed

to combine the information available from multiple latent prints in the same impression. On the

IIITD-SLF database, a rank-10 performance improvement of 12% was observed using the proposed

method. Most of the feature extraction and matching techniques in literature have been proposed

for matching level 2 (minutiae) and level 3 features from flat and rolled fingerprints. The primary

challenge for matching latent fingerprints is the extraction of valid reliable features. Reliable and

accurate matching techniques could be devised along with the development of feature extraction

techniques. The growth in feature extraction methods would guide the growth in feature matching

techniques, as well. Another challenge in latent fingerprint matching, is to transform the human

cognition into automated systems to match fingerprint features [106].

Latent fingerprint matching is naturally challenging due to the limited information availability

and noisy information. An automated latent fingerprint matching system would be a significant

contribution towards crime scene analysis and other forensic applications. To develop such a

“lights-out" system, the individual modules must be addressed thoroughly. The research in ev-

ery single module is at its preliminary stage allowing a large scope of research in this field. With

manual annotation of minutiae features, a maximum accuracy of about 75% can be achieved in

the NIST SD-27 database. Growth should occur in parallel and in all the modules of a latent
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Table 2.4: Steps involved in latent fingerprint analysis, the features used in literature for the
individual steps and corresponding evaluation metric. Majority of the features are extended from
full fingerprint analysis literature. Along with the metrics specific to evaluation the performance
for individual stages, rank-𝐾 matching performance if also used for evaluation.

Process Features used in literature Evaluation metrics

Segmen-
tation

1. Orientation tensor, frequency tensor [6]
2. Correlation strength [59]
3. Adaptive total variation (TV-LI) [63]
4. Directional total variation (TV-L2) [64]

1. Missed Detection Rate
2. False Detection Rate
3. Rank-𝐾 matching

Quality
Assess-
ment

1. NFIQ 1.0 features, frequency domain analysis,
local clarity analysis, orientation flow, radial power
spectrum, ridge valley uniformity, Gabor filters, and
minutiae count [70]
2. Gabor filters [71]
3. Ridge clarity map, number of minutiae [72]

1. VID and non-VID classifi-
cation
2. Rank-𝐾 matching of dif-
ferent quality bins

Quality
En-
hance-
ment

1. Dictionary of orientation patches [60, 76]
2. Candidate orientation map, singular points [74, 75]

1. Average estimation error of
orientation (in degrees)
2. Rank-𝐾 matching of dif-
ferent quality bins

Feature
extrac-
tion

1. Descriptor using stacked denoising sparse autoen-
coder [107]

1. Patch prediction accuracy
2. Rank-𝐾 matching perfor-
mance

Matching

1. Singular points, ridge flow map, ridge wavelength
map, ridge quality map, fingerprint skeleton, minutiae
points, ridge correspondence, level 3 features [22]
2. Orientation field, ridge flow, quality map, manual
minutiae [93]
3. MCC descriptor for minutiae [65]
4. Manual, automated extracted minutiae [90], [89]

1. Rank-𝐾 matching

fingerprint matching system to overcome the challenges of latent fingerprint matching. The de-

velopment of automated systems for latent fingerprint matching requires forensic domain experts.

A lack of systematic methodology and defined procedure for manual matching of latent finger-

prints impediments the growth of automated systems. The knowledge of on-field forensic experts

and computational biometric researchers should be brought together to better understand practical

challenges in the development of automated systems for latent fingerprint matching.
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2.4 Smartphone Fingerphoto Matching

Table 2.5 summarizes these approaches in terms of the database used, challenges addressed, and

the solution proposed. In 2005, Lee et al. [108] proposed a ridge segmentation algorithm by

building a color model for the foreground skin region. They enhanced the ridge information by

computing the ridge orientation using the gradient. On a database of 400 images, they reported a

true accept rate of 75% at 0.1% false accept rate. Later in 2008, Lee et al. [109] studied the chal-

lenge of fingerphoto quality estimation using gradient information coherence in the local region,

under varying poses. They created a private fingerphoto dataset with four subsets and achieved

an EER of 3.02% over 120 fingerphoto sequences and 1200 fingerprint images. In 2012, Stein et

al. [110] emphasized the need of a quality estimation algorithm for fingerphoto images and pro-

posed an algorithm using the ridge edge density in a local region. Using a dataset of 41 subjects

from two mobile devices, an EER of 19.1% was reported. In 2012, Li et al. [112] studied the per-

formance of ten-print matchers such as Verifinger by Neurotechnology and NBIS from NIST. With

2100 fingerphoto images captured using three different mobile phones with varying background

and illumination, an EER of 24.8%−49.6% was reported for the different matchers. Based on this

study, Li et al. [40] observed that minutiae extraction using existing commercial matchers such as

Verifinger is extremely noisy and produces lots of spurious minutiae. They proposed a learning

based quality estimation algorithm using fingerprint specific features along with SVM classifier.

In comparison with the manually annotated ground truth labels, they achieved a Spearman cor-

relation coefficient of 0.53. However, both dataset and ground truth annotations were not made

publicly available. Stein et al. [113] presented a study using a sequence of fingerphoto images

to avoid spoofing the system. The data was collected in a controlled environment and not made

publicly available. In 2015, Minaee and Wang [115] proposed using scattering network features

with PCA and SVM for matching touchless fingerphoto captured images captured using a camera

in a controlled environement. No segmentation or enhancement approaches were considered and

they obtained an EER of 8.1%.

Overall, the existing research has focused on fingerphoto preprocessing technique such as qual-

ity enhancement, pose correction, and foreground segmentation independently. For matching, pri-

marily minutia based algorithms have been explored. The major limitations of existing research
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can be summarized as follows:

∙ Existing fingerphoto recognition algorithms use minutiae based matching techniques. How-

ever, Li et al. [112] have shown that minutia extraction is highly spurious in fingerphoto

images. Therefore, there is a need to explore non-minutia based fingerphoto matching algo-

rithms as well.

∙ Existing research has focused on addressing individual challenges such as segmentation or

feature extraction only. There is a lack of an end-to-end matching pipeline that involves

preprocessing, feature extraction, and matching to address multiple challenges.

∙ There is no publicly available dataset and protocol to promote benchmarking in the important

problem of smartphone based fingerphoto matching.
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Table 2.5: A literature survey of existing algorithms for processing and matching fingerphoto
images captured using mobile phones.

Research Database Challenges Algorithm Results
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Lee et al.,
2005 [108]

840 fingerphoto
from 168 fingers

Segmentation using
color model, ridge
gradient extraction

Separability:
1.754, Gen-
uine Accept
Rate (GAR):
0.75@0.001False
Accept Rate
(FAR)

Lee et al.,
2008 [109]

120 fingerphoto
sequence from
120 fingers, 1200
fingerprints from
60 fingers

4 Pose, quality estima-
tion using gradient co-
herence and symmetry

Rejection rate:
5.67%, EER:
3.02%

Stein et al.,
2012 [110]

492 fingerphoto
from 82 fingers

4 Quality estimation us-
ing edge density

EER: 19.1%

Derawi
et al.,
2012 [111]

1320 fingerphoto
from 220 fingers

Fingerphoto matching
using VeriFinger SDK

EER: 4.5%

Li et al.,
2012 [112]

2100 fingerphoto
from 100 fingers

4 4 Fingerphoto matching
using VeriFinger SDK
and NBIS

EER: 24.8% -
49.6%

Li et al.,
2013 [40]

2100 fingerphoto
from 100 fingers

4 4 Quality estimation us-
ing 12 features and
SVM

Spearman corre-
lation coefficient
of 0.53

Stein et al.,
2013 [113]

990 fingerphoto
from 74 fingers,
66 finger videos
from 22 fingers

4 Reflection based
spoofing detection

EER in the range:
1.2% - 3%

Tiwari and
Gupta [114]

156 fingerphoto
from 50 fingers

4 Matching using scale
invariant features

EER: 3.33%

Minaee
and
Wang [115]

1480 fingerprint
images

4 Matching using deep
ScatNet, Principal
Component Analysis
(PCA), and SVM

EER: 8.1%
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Chapter 3

Database Collection

3.1 Introduction

After decades of research, fingerprint recognition has become one of the most reliable and com-

monly used biometric modality. In 2012, the market for automated fingerprint identification sys-

tems and fingerprint technologies contributed the greatest share of the global biometrics market

and is forecasted to continue to be the main source of overall market revenues [116]. This can be

ascertained by the growing number of deployed applications over the last decade using fingerprint

biometric. Some of the notably large scale applications are:

∙ The Office of Biometric Identity Management (OBIM), previously called the US-VISIT

program [117], provides biometric identification services by collecting fingerprints and other

biometric modalities from all the visitors applying for U.S. visa. A fingerprint database

of over 90 million identities is currently accessed by various federal and state government

agencies.

∙ Aadhaar [118], the brand name of Unique Identification of Authority of India (UIDAI), is

one of the largest biometrics projects providing civil and commercial applications for Indian

residents. It uses a combination of fingerprint and iris biometrics for de-duplication and

authentication.

∙ FBI IAFIS [119] is U.S. national fingerprint and criminal history system. It houses one of
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the largest fingerprint database, recording more than 70 million suspects, along with more

than 34 million civil prints.

Evolution of fingerprint authentication has resulted in a broad spectrum of applications in-

cluding personal authentication, e-commerce, security, and forensic applications. This widespread

usage has also led to emergence of different challenges in fingerprint recognition. Some of these

challenges are:

∙ Interoperability across multiple fingerprint sensors: Wide range of intra-class variations

can occur based on the method or the sensor by which fingerprint is captured [138]. It

can be observed that fingerprints captured from the same finger during the same session,

visually differ with variations in capture process or sensor. The report by National Research

Council [139] also discusses this important challenge and suggests that the availability of

a large database with fingerprint impressions from multiple fingerprint devices can help in

improving the performance of algorithms (Recommendation 12).

∙ Matching latent prints to slap or rolled fingerprints: Forensic experts in law enforcement

agencies lift latent fingerprints from crime scenes and match them with enrolled databases

containing slap or rolled fingerprints. Since the information content and quality of latent fin-

gerprints is significantly different from slap and rolled, there is significant research required

to improve the performance of current systems [140].

∙ Matching fingerprint images of different resolutions and spectrums: Fingerprint capture

technology was primarily driven by optical and capacitive sensors. However, with growing

usage of fingerprint in e-commerce applications and advent of smart mobile phones, match-

ing fingerprints across different resolutions is also gaining importance. Further, there are

fingerprint sensors such as Lumidigm Venus, that utilize information from multiple spec-

trums for fingerprint capture. Matching such images with the ones obtained from optical or

capacitive sensors requires additional research.

Similar to other data driven research areas, advancements in fingerprint recognition, especially

in the academic community, are dependent on the availability of large databases. Some of the
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Table 3.1: Comparison of publicly available fingerprint databases in terms of capture methodol-
ogy, size, and the types of research challenges that can be addressed.

C
apture

Database Classes Images Research Challenges Characteristicssession

sensor

spectral
resolution

Slap
R

olled

L
atent

Inked

NIST SD-30 [120] 360 1008 X X X X Card database. Scanned at 500, 1000 PPI.
NIST SD-29 [121] 2160 3024 X X X Card database. Scanned at 500 PPI.
NIST SD-4 [122] 2000 4000 X X Card database. Five L1 class annotation.
NIST SD-10 [123] 5520 5520 X Card database of rare L1 patterns.
NIST SD-14 v2 [124] 27000 54000 X X Card database. Wavelet Scalar Quantiza-

tion (WSQ) compression.

L
ive-scan

UCSD WWF [125] 300 300 X X Wet and Wrinkled fingerprint matching.
ATVS-FFp [126] 68×2 1632×2 X X Fake fingerprint matching. Captured using

3 sensors.

FVC 2000 [127] 110×4 880×4 X X X Low-cost optical, Low-cost capacitive, op-
tical, and synthetic fingerprint subsets.

FVC 2002 [128] 110×4 880×4 X X X Optical, capacitive, and synthetic finger-
print subsets.

FVC 2004 [129] 120×4 1440×4 X X X Optical, thermal sweep, and synthetic fin-
gerprint subsets.

FVC 2006 [130] 150×4 1800×4 X X X X Electric field, optical, thermal sweep, and
synthetic fingerprint subsets.

WVU multi-
modal [73] 272 7219 X CrossMatch, Precise Biometrics, SecuGen

sensor at 500 PPI.
CASIA v5.0 [131] 4000 20000 X URU4000 fingerprint sensor.
MCYT bi-
modal [132]

1000 24000 X X Digital Persona UareU, Precise Biometrics
SC-100 sensors.

C
am

era

NIST SD-24 [133] 100 100
(video)

X X 10 seconds of MPEG-2 Compressed digital
video of live-scan fingerprint data.

HKPU low-
resolution [134]

306 3080 X X Captured directly using a web camera.

PolyU HRF [135] 148 3170 X X Captured directly using a high-resolution
camera.

L
atent

Tsinghua OLF [136] 12 100 X Overlapped latent fingerprint segmentation
and matching.

NIST SD-27A [4] 258 258 X X X Latent, 500 PPI and 1000 PPI exemplars.
Manual annotation of features for latent
prints.

IIIT-D SLF [105] 180 420 X X X Simultaneous latent, 500 PPI slap. Manual
annotation of features for latent prints.

IIIT-D Latent Fin-
gerprint [137]

150 1241 X X X X Latent-to-latent with 500 PPI slap. La-
tent prints directly captured using a high-
resolution camera.

IIIT-D MOLF
Database (pro-
posed)

1000 19200 X X X X X Dap, slap, latent and simultaneous latent
fingerprints. Manual annotation of features
for latent prints.
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large publicly available fingerprint databases include card ink-print databases, live scan finger-

print databases, multi-sensor fingerprint databases, multi-resolution fingerprint databases, latent

with mated full fingerprints databases, and other special databases. A comparative analysis of all

the existing public fingerprint databases is provided in Table 3.1 which also provides a listing of

the types of research challenges that can be addressed using each database. Existing databases

primarily have two limitations:

∙ they generally contain image variations corresponding to a few challenges only, and

∙ some of the challenges such as latent fingerprint recognition and cross spectrum matching

only have small databases associated with them.

Some of these challenges are being researched upon using non-public databases and therefore it

becomes challenging to understand the progression in state-of-the-art in fingerprints and reproduce

some of the results. It is our assertion that the availability of a large fingerprint database containing

images with variations such as multi-sensor, multi-spectral, and latent vs. optical images can sig-

nificantly instigate the research in academic community and can help visualize the improvement in

the literature. Therefore, we have created a new fingerprint database, termed as Multi-sensor Op-

tical and Latent Fingerprint database1. The MOLF database contains 19, 200 multi-sensor, multi-

spectral, dap and slap fingerprint images of 100 subjects obtained from three different sensors

along with mated latent and simultaneous latent fingerprints. The latent and simultaneous latent

fingerprints have manually annotated features as well. The motivation in forming a new diverse

fingerprint database is to have a large latent and simultaneous latent fingerprint collection with the

live-scan prints collected using multiple types of sensors. It provides a scope for development,

evaluation and performance assessment of fingerprint matching algorithms based on a single vari-

ate matching as well as cross-variate matching in various applications. The next section presents

the details of the database.

1Sharing/ downloading information at: http://iab-rubric.org/resources/molf.html
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Figure 3-1: Sample fingerprints captured of a subject representing capture variations in the MOLF
database: (a) 500PPI fingerprint set from Secugen live scan sensor, (b) multi-spectral fingerprint
set from Lumidigm live scan sensor, (c) slap fingerprint set from CrossMatch L-Scan Patrol live
scan sensor, (d) latent fingerprint set, (e) simultaneous latent fingerprint set of subject’s right hand,
and (f) simultaneous latent fingerprint set of subject’s left hand.
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Table 3.2: Different subsets of the MOLF database along with fingerprint type, capture protocol,
and its properties.

Subset Type #Images Image Size Capture protocol Comment
𝐷𝐵1 Multi-

spectral
live-scan

4000 352× 544 100 users × 10 fin-
gers × 2 sessions
× 2 instances

Lumidigm Venus

𝐷𝐵2 Live-scan
dap

4000 258× 336 100 users × 10 fin-
gers × 2 sessions
× 2 instances

Secugen Hamster IV

𝐷𝐵3 Live-scan
slap

1200 1600× 1500 100 users × 3 slap
prints × 2 sessions
× 2 instances

CrossMatch L-Scan
Patrol

𝐷𝐵3_𝐴 Live-scan
dap

4000 variable 100 users × 10 fin-
gers × 2 sessions
× 2 instances

Cropped prints from
DB3

𝐷𝐵4 Latent 4400 variable 100 users × 2
hands × 2 sessions
× 11 instances

Cropped from
simultaneous prints

𝐷𝐵5 Simultaneous
latent

1600 1924× 1232 100 users × 2
hands × 2 sessions
× 4 instances

Annotated ROI, core
points and minutiae

3.2 Multi-sensor Optical and Latent Fingerprint Database

The MOLF database contains large number of fingerprint images with variations in terms of sen-

sor, resolution, capture spectrum, with slap, latent, and simultaneous latent fingerprint images.

Therefore, it provides the opportunity to develop and evaluate algorithms for preprocessing, fea-

ture extraction, and matching in different scenarios including latent print matching. As shown in

Table 3.1, the database contains 19, 200 fingerprint samples from all 10 fingers of 100 individuals

(total 1000 classes, treating each finger as a class) captured in two different sessions with an aver-

age time difference of 15 days. The database is captured in an indoor environment with controlled

lighting. During each session, each individual provides the following information:

1. two independent instances of all 10 fingerprints captured using Lumidigm Venus sensor,

2. two independent instances of all 10 fingerprints captured using Secugen Hamster IV sensor,

3. two independent instances of slap fingerprints (4+4+2) captured using CrossMatch L-Scan

Patrol sensor, and
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4. four independent simultaneous latent impressions (2 + 2 + 3 + 4 latent fingerprints) of left

and right hand fingers, separately.

A sample fingerprint instance captured from all the sensors is shown in Figure 3-1. Depend-

ing on the type of problems that can be addressed, the database is partitioned into six subsets:

𝐷𝐵1 contains the flat dap (all 10) fingerprints collected using Lumidigm Venus sensor and 𝐷𝐵2

contains the same fingerprints collected using Secugen Hamster IV sensor. 𝐷𝐵3 contains the

slap fingerprints (4 + 4 + 2 configuration) collected using CrossMatch L-Scan patrol sensor while

𝐷𝐵3_𝐴 contains the dap fingerprints cropped from 𝐷𝐵3 using nfseg tool [5]. 𝐷𝐵4 contains the

latent fingerprints and 𝐷𝐵5 contains the simultaneous latent fingerprints. Latent fingerprints are

obtained by manually cropping the simultaneous latent prints. Table 3.2 provides a summary of

different subsets of the database and the details are presented further.

3.2.1 Fingerprint Data Collected with Optical Sensors

The MOLF database has fingerprints taken using three different optical sensors: (i) Lumidigm

Venus IP65 Shell, (ii) Secugen Hamster-IV, and (iii) CrossMatch L-Scan Patrol. These three sen-

sors are in compliance with FBI Image Quality Specifications. The resolution of images captured

from Lumidigm, Secugen, and CrossMatch sensors are 500ppi each while the image sizes are

352× 544, 258× 336, and 1600× 1500 respectively.

For 100 individuals, each of the 10 fingerprint is captured in two sessions and in each session,

two independent instances are captured. During the first session, the whole process of collection

is explained to all the volunteers (individuals) providing the fingerprints and is also assisted by

cleaning their fingers before capture. During the second session, the volunteers are allowed to

act upon their own, without forced cleaning. The capture is neither controlled by the expert nor

any constraints are applied on the finger’s condition. The key motive behind this procedure is to

mimic the practical situation of an intentionally registered gallery fingerprint (session I) and an

unconstrained probe fingerprint (session II). Thus, for each sensor, there are 4000 images (𝐷𝐵1,

𝐷𝐵2, 𝐷𝐵3_𝐴) with 1000 fingerprint classes.
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(a) (b)

Figure 3-2: (a) The latent fingerprint capture setup utilizing a 1/2′′ CMOS sensor with a 8mm focal
length CCTV lens mounted on a Manfrotto magic arm that yields an image of size 3840 × 2748
and (b) a sample screen shot of the GUI based software tool developed for fingerprint feature
annotation.

3.2.2 Latent Fingerprint Collection and Annotation

The latent and simultaneous latent fingerprints are captured with black powder dusting process.

The usual method of lifting dusted fingerprints, using forensic tapes, introduces non-linear dis-

tortion in the fingerprint ridge information. Therefore, instead of lifting the dusted fingerprints

using tapes, a camera setup is created to directly capture the simultaneous latent fingerprint. The

camera setup is an improvised version of the setup created during the capture of the IIITD-SLF

database [105]. The camera setup consists of a USB programmable UEye camera that has a cap-

ture size of 3840 × 2748 pixels. It has a 1/2” CMOS sensor and captures at a maximum rate of 3

frames per second. A manual C-Mount CCTV lens having a focal length of 8mm is mounted on

the camera which provides finer focus for capturing the latent fingerprint. An illumination ring is

attached around the camera to enhance the capture quality. This whole camera setup is mounted

on a flexible Manfrotto magic arm - an elbow arm, clamped to the camera on one end using a

Manfrotto super clamp and another end is clamped to the table or to any support near the presence

of dusted fingerprints. Figure 3-2(a) shows the camera setup used for capturing latent fingerprints.

The volunteers deposit their simultaneous latent fingerprints on a ceramic tile. Though the

data collection happens in a closed environment, the participants are completely unconstrained,

introducing a large amount of variation and challenges in the deposited latent print. Two different

slabs of the same tile are used to capture the left and right hands of the user during a single session.

Four different impressions of both hands of the user are captured during each session as follows:
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1. thumb and index finger,

2. index and middle finger,

3. index, middle and ring finger,

4. index, middle, ring and little finger.

Fingerprints are then directly captured using the self constructed camera apparatus. Thus, 16

instances of simultaneous latent are captured from each individual in two different sessions. A

total of 1, 600 simultaneous latent impressions are captured constituting 𝐷𝐵5. The simultaneous

latent fingerprints are manually cropped to get the individual latent fingerprints, thus forming𝐷𝐵4.

As shown in Table 3.2, there are a total of 4400 latent fingerprints from 100 subjects with 1000

classes. 𝐷𝐵4 contains two latent print instances of every thumb and little finger, four instances of

ring finger, six instances of middle finger, and eight instances of index finger.

3.2.3 Latent Fingerprint Annotation

Automatic feature extraction from latent and simultaneous latent fingerprints is an important re-

search challenge [22]. One of the major goals of FBI’s Next Generation Identification (NGI)

system is to develop a “lights-out" (fully automatic) fingerprint matching algorithm. To evalu-

ate such automated algorithms, a large latent fingerprint database, with manually annotated fea-

ture points, is essential. Therefore, to facilitate the evaluation of such systems, manually marked

ground truth feature points are provided for latent and simultaneous latent fingerprints in 𝐷𝐵4 and

𝐷𝐵5, respectively. For every simultaneous latent impression from 𝐷𝐵5, three different features

are marked: (i) ROI boundary around every finger impression, (ii) singular points - core and delta

(only those found within the available impression) on each finger, and (iii) minutiae on all fingers.

Two different annotators2 independently marked the features, each annotating equal number of

images from 𝐷𝐵5. The annotators marked these features at the rate of 2− 3 subjects per day and

in 22 days the annotation task was completed. The annotators worked for about 8 hours a day with

regular breaks to avoid stress. Using the manually marked ROI, individual fingerprints are cropped

2The annotators are not certified latent experts. However, the annotations are made publicly available and can be
iteratively improved.
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Table 3.3: The nomenclature followed for the five subsets of the MOLF database.

Database Image Nomenclature
𝐷𝐵1 subjectID_captureID_fingerID
𝐷𝐵2 subjectID_captureID_fingerID
𝐷𝐵3 subjectID_captureID_handID
𝐷𝐵3_𝐴 subjectID_captureID_fingerID
𝐷𝐵4 subjectID_handCode_instanceID_fingerID
𝐷𝐵5 subjectID_handID_instanceID

from the simultaneous impressions and provided as latent fingerprints in 𝐷𝐵4. The corresponding

features for individual latent prints are also separated and provided along with 𝐷𝐵4.

To enable simultaneous latent fingerprint annotation and to ease the process, we also developed

a manual annotation tool in Matlab. A screenshot of the tool is shown in Figure 3-2(b). The GUI

based tool allows the annotator to mark the singular (reference) points, minutiae, and ROI. Along

with the database and manually annotated feature points, the tool for manual annotation will also

be made available to the research community. As the manually annotated features are provided

publicly, their accuracy could be improved by further verification from other experts.

3.2.4 Availability of Database

All the fingerprints are available in compressed WSQ format and uncompressed BMP format.

Table 3.3 shows the naming convention of images in different subsets of the MOLF database.

subjectID defines the subject number (1-100) while captureID defines the capture session instance

number (1-4) where 1 and 2 belong to the first session, while 3 and 4 belong to the second session.

fingerID defines the captured finger number (1-10) with 1-5 from right thumb to right little finger

and 6-10 from left thumb to left little finger. handID defines the slap fingerprint capture ID where

1 denotes the right four fingers, 2 denotes the left four finger, and 3 denotes the two thumbs.

handCode defines which hand the simultaneous latent is captured from (L,R), and instanceID is the

particular instance of capture of the impression where 1-4 belongs to first session and 5-8 belongs

to second session. The total size of the database in WSQ format is 600 MB and in uncompressed

Bitmap Image (BMP) format is 18.2 GB. The database is made available for research purpose via:

http://iab-rubric.org/resources/molf.html
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3.3 Research Applications of the Database

MOLF database provides an opportunity to study multiple challenging problems related to finger-

print recognition. Major applications and new research challenges that can be addressed using the

database are discussed as follows:

∙ Inter-sensor fingerprint matching: 𝐷𝐵1, 𝐷𝐵2, and 𝐷𝐵3_𝐴 contain images captured

from three different live-scan fingerprint sensors. By having one of the subsets as gallery

and any other as probe, the performance of a fingerprint matcher can be evaluated for sensor

interoperability. This also represents a practical scenario where the gallery and probe images

are not captured using the same sensor.

∙ Latent fingerprint feature extraction and matching: Forensic applications require match-

ing latent fingerprint with live-scan fingerprints [22]. Extracting reliable features from latent

fingerprints is a challenging task. Given the ground truth minutiae annotations, the perfor-

mance of a minutiae extraction algorithm can be evaluated with good confidence. Also, with

an exemplar gallery set (any one of 𝐷𝐵1, 𝐷𝐵2, or 𝐷𝐵3_𝐴) and latent probe set (𝐷𝐵4),

the performance of a latent fingerprint matching system can be analyzed.

∙ Latent to latent fingerprint matching: The 𝐷𝐵4 subset can be used for evaluating the per-

formance of a latent to latent fingerprint matcher for crime scene linking applications [137].

Since the latent prints in 𝐷𝐵4 consist of multiple instances of the same finger, both gallery

and probe can be formed using latent prints in 𝐷𝐵4.

∙ Simultaneous latent fingerprint matching: The 𝐷𝐵5 subset can be used for matching si-

multaneous latent fingerprints [104, 105]. Simultaneous latent prints in𝐷𝐵5 can be matched

with live-scan dap prints in𝐷𝐵1,𝐷𝐵2, or𝐷𝐵3_𝐴, and slap fingerprints in𝐷𝐵3 to evaluate

the performance of the matcher.

∙ Simultaneous latent fingerprint segmentation: As the manual segmentation results for

simultaneous latent fingerprints in 𝐷𝐵5 are provided, the ground truth can be used to assess

the proficiency of automatic segmentation algorithms.
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3.4 Experimental Evaluation for Baseline Results

To establish the baseline performance on the MOLF database, several experiments are performed.

These experiments are designed to demonstrate the challenges associated with the proposed database

and to highlight its usage. The baseline results for livescan fingerprint experiments are computed

using two fingerprint matching algorithms: NBIS [5] and VeriFinger [141]. NBIS is an open

source minutiae based matching algorithm developed by NIST whereas VeriFinger is a low cost

proprietary software by Neurotechnology.

Latent fingerprint matching is one of the open research problems that the community is at-

tempting to address. It is important to note that there is no standard latent fingerprint matching

SDK or commercial system available in public domain, using which baseline can be established.

In literature, we have observed that local MCC [142, 143] description for manually marked minu-

tiae provides state-of-the-art results [85]. Therefore, MCC descriptors are utilized for establishing

baseline results on the latent fingerprint dataset.

First, a NFIQ [144] based analysis is performed to understand the quality distributions of dif-

ferent subsets of the databases. Thereafter, three different sets of experiments are performed to

establish the baseline in different application scenarios. All the experiments are performed in iden-

tification mode and the results are reported in terms of CMC curve. The first experiment evaluates

the performance on optical scanners and the last two experiments pertain to latent prints.

3.4.1 Quality Analysis

Quality of all the fingerprints captured are analysed using NFIQ [144]. It is an open source

minutiae-based quality extraction algorithm that provides one of the quality values {1, 2, 3, 4, 5},

with 1 representing the best quality and 5 the worst. NFIQ quality distribution of 𝐷𝐵1, 𝐷𝐵2,

𝐷𝐵3_𝐴, and 𝐷𝐵4 are shown in Figure 3-3. In live-scan fingerprints, it can be observed that the

images from 𝐷𝐵1 (Lumidigm) have the best quality images highlighting the robustness of multi-

spectral images. Lumidigm Venus sensor captures the fingerprint in multiple spectrums and while

fusing them, it enhances the image quality. Also, CrossMatch L-Scan Patrol has an in-built quality

control mechanism and captures only those fingerprints that pass the quality threshold. However,

no such quality constraint is imposed on Secugen Hamster IV scanner, thus some of the finger-
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Figure 3-3: NFIQ quality score distribution of (a) 𝐷𝐵1 (Lumidigm) images, (b) 𝐷𝐵2 (Secugen)
images, (c) 𝐷𝐵3_𝐴 (CrossMatch) images, and (d) 𝐷𝐵4 (latent) images. In NFIQ measure, 1
denotes the best quality score while 5 denotes the worst.

prints in 𝐷𝐵2 have relatively lower quality scores. As expected, latent fingerprints in 𝐷𝐵4 are

poor quality fingerprints with almost 96% of them having a quality score of 5. However, NFIQ

is not designed to evaluate the quality of latent fingerprints and a standard (open source) latent

fingerprint specific assessment algorithm is still a research challenge. Similarly, there is no exclu-

sive quality measure for simultaneous latent fingerprints (𝐷𝐵5) as well. Therefore, this is a high

impact research challenge which could be addressed using this database.

3.4.2 Sensor Interoperability Analysis

This experiment (termed as Experiment I) is performed to establish the baseline accuracy with

fingerprints captured in different sessions using different sensor. In all three subsets, the first

two instances captured during the first session are taken as gallery and the fingerprints captured

during the second session are used as probe. Thus, the gallery and probe both contain 2000 images
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(a) (b) (c)

Figure 3-4: Sample images showing quality variations across the three sensors (a) Secugen Ham-
ster IV, (b) CrossMatch L-Scan Patrol, and (c) Lumidigm Venus. It can be observed that some of
the images captured using Secugen Hamster IV has a poor capture quality because of its uncon-
strained capture mode.

pertaining to 1000 (100 × 10) classes. Datasets 𝐷𝐵1, 𝐷𝐵2, and 𝐷𝐵3_𝐴 are used. Since 𝐷𝐵3

contains slap fingerprints, it is not used for this experiment. NBIS [5] and VeriFinger [141] are

then used for feature extraction and matching. Both identification and verification experiments are

performed and the results are reported in Table 3.4. The corresponding CMC curves are shown

Figure 3-5, Figure 3-6 and the Receiver Operating Characteristic (ROC) curves in Figure 3-7,

Figure 3-8. The major observations made are as follows:

∙ In experiment I, VeriFinger is observed to yield higher accuracies compared to NBIS on all

three subsets of the database. VeriFinger provides same-sensor rank-1 matching accuracy in

the range of 96-98% whereas NBIS is at least 7% lower in performance.

∙ From experiment I, it can be observed that matching performance is high when the gallery

and probe fingerprints are captured using the same sensor. However, when the gallery and

probe fingerprints are captured using different sensors, performance is reduced significantly

for both NBIS and VeriFinger. This highlights that cross-sensor fingerprint matching, espe-

cially when one sensor is a multi-spectral sensor, is a research challenge.
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Table 3.4: Rank-1 identification accuracy and equal error rate (for verification) pertaining to
experiment I (sensor interoperability analysis).

Experiment Algorithm Gallery Probe Accuracy (%) EER (%)

I: Live-scan
fingerprints

NBIS

𝐷𝐵1 (Lu-
midigm)

𝐷𝐵1 (Lumidigm) 84.90 8.57
𝐷𝐵2 (Secugen) 42.50 10.11
𝐷𝐵3_𝐴 (CrossMatch) 43.50 49.67

𝐷𝐵2
(Secugen)

𝐷𝐵1 (Lumidigm) 44.75 10.05
𝐷𝐵2 (Secugen) 91.70 7.85
𝐷𝐵3_𝐴 (CrossMatch) 44.70 49.77

𝐷𝐵3_𝐴
(Cross-
Match)

𝐷𝐵1 (Lumidigm) 42.45 46.74
𝐷𝐵2 (Secugen) 43.95 46.67
𝐷𝐵3_𝐴 (CrossMatch) 84.90 08.88

Verifinger

𝐷𝐵1 (Lu-
midigm)

𝐷𝐵1 (Lumidigm) 96.75 3.16
𝐷𝐵2 (Secugen) 47.40 6.46
𝐷𝐵3_𝐴 (CrossMatch) 46.90 6.42

𝐷𝐵2
(Secugen)

𝐷𝐵1 (Lumidigm) 47.35 6.47
𝐷𝐵2 (Secugen) 98.10 3.20
𝐷𝐵3_𝐴 (CrossMatch) 46.20 3.94

𝐷𝐵3_𝐴
(Cross-
Match)

𝐷𝐵1 (Lumidigm) 47.80 6.42
𝐷𝐵2 (Secugen) 43.25 3.94
𝐷𝐵3_𝐴 (CrossMatch) 97.05 3.51

∙ Verification experiments performed using NBIS show clear impact of cross-sensor match-

ing, having about 40% more errors than same-sensor matching. However, VeriFinger re-

duces the effect of cross-sensor matching to great extent showing a difference of only about

3%. Nonetheless, in large scale applications such as India’s Aadhaar project, 3% is a very

significant error and might have a greater impact.

3.4.3 Latent Fingerprint Matching

This experiment is performed to establish the baseline accuracy of latent fingerprint matching.

There are two different experiments performed on latent fingerprint matching: (i) latent print

matching using manually annotated minutiae (termed as Experiment II), and (ii) latent print match-

ing using automatically extracted minutiae (termed as Experiment III). In experiment II, 4400 latent

images in 𝐷𝐵4 are used as probe and they are matched against three different galleries of 𝐷𝐵1,

𝐷𝐵2, and 𝐷𝐵3_𝐴. The results are computed with two different approaches (a) MCC descriptor

and (b) 𝐵𝑜𝑧𝑜𝑟𝑡ℎ3 (an open source matcher) available as a part of NBIS. The results are reported in
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Table 3.5: Rank-50 identification accuracy (%) of experiment II (latent matching with manually
marked minutiae) and experiment III (latent matching with automatically extracted minutiae).

No. Experiment Algorithm Gallery Probe Accuracy

II (a)
Latent fingerprints
(manually annotated
minutiae)

MCC
𝐷𝐵1 (Lumidigm)

𝐷𝐵4 (La-
tent)

7.84
𝐷𝐵2 (Secugen) 7.28
𝐷𝐵3_𝐴 (CrossMatch) 5.88

II (b)
Latent fingerprints
(manually annotated
minutiae)

𝐵𝑜𝑧𝑜𝑟𝑡ℎ3

𝐷𝐵1 (Lumidigm)
𝐷𝐵4 (La-
tent)

31.86
𝐷𝐵2 (Secugen) 31.49
𝐷𝐵3_𝐴 (CrossMatch) 33.38

III (a)

Latent fingerprints
(automatically ex-
tracted minutiae -
without FTP)

NBIS
𝐷𝐵1 (Lumidigm)

𝐷𝐵4 (La-
tent)

6.06
𝐷𝐵2 (Secugen) 9.09
𝐷𝐵3_𝐴 (CrossMatch) 10.60

VeriFinger
𝐷𝐵1 (Lumidigm)

𝐷𝐵4 (La-
tent)

6.80
𝐷𝐵2 (Secugen) 6.37
𝐷𝐵3_𝐴 (CrossMatch) 6.51

III (b)

Latent fingerprints
(automatically ex-
tracted minutiae -
with FTP)

NBIS
𝐷𝐵1 (Lumidigm)

𝐷𝐵4 (La-
tent)

53.03
𝐷𝐵2 (Secugen) 42.42
𝐷𝐵3_𝐴 (CrossMatch) 46.97

VeriFinger
𝐷𝐵1 (Lumidigm)

𝐷𝐵4 (La-
tent)

55.60
𝐷𝐵2 (Secugen) 49.27
𝐷𝐵3_𝐴 (CrossMatch) 56.09

Table 3.5 and the CMC curves are shown in Figure 3-9. In experiment III, both mindtct (NBIS) and

VeriFinger are used for feature extraction and matching. Latent fingerprints in 𝐷𝐵4 are matched

with live-scan fingerprints in 𝐷𝐵1, 𝐷𝐵2 and 𝐷𝐵3_𝐴, individually. The gallery-probe splits used

are same as in experiment II. Two sets of experiments are performed: (a) using all probe images in

𝐷𝐵4, and (b) after removing the Failure To Process (FTP) latent prints from 𝐷𝐵4. The results of

all latent print matching using automatically extracted minutiae are reported in experiment III (a).

During automatic minutiae extraction in set III (a) experiments, the minutiae extractor (mindtct or

VeriFinger) failed to extract even one minutia from several latent probes. In experiment III (b),

these images are excluded from the probe set and considered as FTP error [9]. The identification

results are reported in Figure 3-9 and Table 3.5. The following key observations can be made:

∙ Experiment II (a) exhibits that state-of-the-art MCC descriptor provides very low rank-50

identification accuracy of about 5− 7%, showcasing the challenging nature of latent finger-

prints in this database.

∙ Experiment II (b) shows that with manually annotated minutiae, rank-50 matching accuracy
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Figure 3-5: CMC curves using NBIS for experiment I. (a) 𝐷𝐵1 (Lumidigm) as gallery, (b) 𝐷𝐵2
(Secugen) as gallery, and (c) 𝐷𝐵3_𝐴 (CrossMatch) as gallery. For all three cases, probe is also
varied to study the effect of interoperability.
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Figure 3-6: CMC curves using VeriFinger for experiment I. (a) 𝐷𝐵1 (Lumidigm) as gallery, (b)
𝐷𝐵2 (Secugen) as gallery, and (c) 𝐷𝐵3_𝐴 (CrossMatch) as gallery. For all three cases, probe is
also varied to study the effect of interoperability

of latent fingerprints is in the range of 31-34%. This indicates that even after manual annota-

tion of minutiae, latent fingerprint matching has a scope for designing robust algorithms for

minutiae matching in partial prints.

∙ For experiment III with 𝐷𝐵4 subset, mindtct extracts an average of four minutiae per latent

print, while VeriFinger extracted almost 42 minutiae per latent print. On the other hand, an

average of 11 minutiae per latent print are marked during manual annotation. This indicates

that mindtct produces too few minutiae while VeriFinger extracts too many spurious minutiae

for latent fingerprint.

∙ Experiment III (a) shows the results of matching latent and live-scan prints using an auto-
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with DB2 (SecuGen) ( EER = 46.67 )
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Figure 3-7: ROC curves using NBIS for experiment I. (a) 𝐷𝐵1 (Lumidigm) as gallery, (b) 𝐷𝐵2
(Secugen) as gallery, and (c) 𝐷𝐵3_𝐴 (CrossMatch) as gallery. For all three cases, probe is also
varied to study the effect of interoperability.
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Figure 3-8: ROC curves using VeriFinger for experiment I. (a) 𝐷𝐵1 (Lumidigm) as gallery, (b)
𝐷𝐵2 (Secugen) as gallery, and (c) 𝐷𝐵3_𝐴 (CrossMatch) as gallery. For all three cases, probe is
also varied to study the effect of interoperability

mated feature extractor and matcher. The results obtained are in the range of 6−11%, which

shows that automated feature extraction requires a significant amount of research. Similar

to experiment II, the best matching performance is obtained for NBIS matcher while using

𝐷𝐵3_𝐴 (CrossMatch) as gallery.

∙ After removing the FTP latent prints from𝐷𝐵4, the performance improves and the accuracy

of experiment III (b) is found to be in the range of 42-56%. It is interesting to note that NBIS

shows a very high FTP rate of almost 78% while the FTP rate for VeriFinger is approximately

17%. However, we would like to emphasize that VeriFinger and NBIS are not meant for

matching latent fingerprints.
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Figure 3-9: CMC curves for experiments II(a), II(b) and III(b). The results are computed with (a)
manually marked minutiae matched using Minutiae Cylinder Code, (b) manually marked features
matched using BOZORTH3, (c) NBIS, and (d) VeriFinger.

∙ nfseg in NBIS is used to crop slap fingerprints captured using CrossMatch sensor. A seg-

mentation accuracy of 98.4% is obtained for segmenting 1200 slap fingerprints into 4000

individual fingerprints, failing to segment 64 fingerprint images. These images are further

manually cropped for our experiments. However, NFSEG fails to perform segmentation in

simultaneous prints, segmenting only 134 latent prints from a total of 4400 prints (with ≈ 3%

accuracy).

Since there is no automatic algorithm for establishing simultaneity and/or automatic simultaneous

latent fingerprint matching, baseline results are not computed for 𝐷𝐵5.
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3.5 IIITD Smartphone Fingerphoto Database v2

In our preliminary research [145], we proposed an initial matching pipeline for fingerphoto im-

ages. We created IIIT-D SmartPhone FingerPhoto Dataset version-1 (ISPFD-v1)3, focusing on

background and environmental illumination variations as two challenges for fingerphoto match-

ing. In our experiments, we observed that fingerphoto images captured in the outdoor environment

with natural background provided the best verification performance. From the lessons learnt using

the previous experiments conducted, we decided to create an extended and improved fingerphoto

database. The main motivation for creating the new database are as follows:

1. To study multiple variations in fingerphoto recognition such as inter-sensor matching includ-

ing varying camera resolution, background variations, and illumination.

2. To study the effect of range of variations caused by varying the surrounding illumination.

The indoor illumination is highly controlled using an extra light source, and the outdoor

illumination is highly varied by capturing fingerphoto images both in day light and night

time (using flash).

3. To create a larger fingerphoto database having at least 300 classes.

Incorporating the above understandings, we present the ISPFD-v2 database consisting of more

than 16000 images obtained from 300 unique fingers. The fingerphoto images are taken using two

smartphones: OnePlus One (OPO)4 and MicroMax Canvas Knight5. Indoor fingerphoto images

are captured in both constrained and uncontrolled environments. A special phone holding stand is

fixed onto the side of the desk onto which the smartphone is mounted, as shown in Figure 3-10.

While the phone is mounted to the stand, a finger is placed on the desk below it, thus ensuring that

the distance between the finger and the camera is fixed. An external illumination ring is placed

around the mounting portion of the stand to be able control the illumination of the image capture in

indoor environment. In outdoor conditions, images are captured without flash during day light and

with flash during night. Auto-focus is always kept ON. Based on the challenges considered, the

3Available at http://iab-rubric.org/resources/spfd.html
4https://oneplus.net/
5http://www.micromaxinfo.com/canvasknight/
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Top view Side view

Figure 3-10: The environment and the mount setup used to collect fingerphoto images in the
proposed ISPFD-v2.

Table 3.6: A summary of the multiple subsets and their variations in the ISPFD-v2.

Set Challenge Variations Classes ImagesIllumination Background Resolution

Set I
White Indoor Controlled White 13MP 300 2400
White Outdoor Uncontrolled White 13MP 300 2400

Set II
Natural Indoor Controlled Natural 13MP 300 2400
Natural Outdoor Uncontrolled Natural 13MP 300 2400

Set III
Resolution Controlled White 5MP 300 2400
Resolution Controlled White 8MP 300 2400
Resolution Controlled White 16MP 300 2400

database is divided into three subsets and the summary of all three subsets is provided in Table 3.6.

The three subsets are:

∙ Set I - white background: Fingerphoto images are captured in both indoor (controlled

illumination) and outdoor (with uncontrolled lighting) environment with white background,

as shown in Figure 3-11(a) and Figure 3-11(b). The two subsets, White Indoor (WI) and

White Outdoor (WO) show the effect of varying illumination with a constant uniform white

background. The images are taken using OnePlus One phone at 13MP resolution. Each
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(a) Indoor Illumination variation with white background 

(b) Outdoor Illumination variation with white background 

(c) Indoor background variation 

(d) Outdoor background variation 

(e) Camera resolution variation 

Figure 3-11: Sample images showing various challenges addressed in IIITD SmartPhone Fin-
gerphoto Database v2. (a)-(b) illumination variation with white background, (c)-(d) background
variation, and (e) camera resolution variation. Multiple samples showing the intra-class variations
and noise present in the database.

subset has 8 images each of right index, right middle, left index, and left middle fingers of

76 subjects. This results in 76 subjects × 4 fingers × 2 lighting variations × 2 sessions × 4

instances = 4864 images for Set I.
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∙ Set II - natural background: Fingerphoto images are captured in both indoor and outdoor

environment, allowing any natural background to be present, as shown in Figure 3-11(c) and

Figure 3-11(d). In real world applications, the natural background available in an indoor

environment is very different as the background objects are much closer to the fingerphoto

as compared to the outdoor background. Thus, the Natural Indoor (NI) subset shows the ef-

fect of background variation under controlled illumination while the subset Natural Outdoor

(NO), shows the effect of background and illumination variations occurring together. The

images are captured using OnePlus One phone at 13MP resolution. Similar to Set I, Set II

also has 4864 images.

∙ Set III - resolution: This set consists of fingerphoto images captured in three different

resolutions with uniform controlled illumination and white background, as shown in Fig-

ure 3-11(e). Two different smartphones, OnePlus One and MicroMax Canvas Knight, are

used to capture the images at three different resolutions 5MP, 8MP, and 16MP. Flash LED

are turned off while the auto-focus is kept ON. All the images are captured in an indoor lab

environment, with uniform lighting and a blank white paper as the background. Under these

settings, four instances of the index finger and middle finger of the right and left hand of

76 subjects are captured at all three resolutions. This results in 76 subjects × 4 fingers × 3

resolutions × 2 sessions × 4 instances = 7296 images.

Figure 3-11 shows sample fingerphoto images from the proposed database. The database will

be made publicly available for academic research at the following link: http://iab-rubric.

org/resources/spfd2.html.
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Chapter 4

Adaptive Latent Fingerprint Segmentation

4.1 Introduction

This research work focuses on automating the task of latent fingerprint segmentation. As shown

in Figure 4-1, some of the factors involved in making latent fingerprint segmentation a difficult

problem are that fingerprints may be of poor ridge clarity [146] or certain latent fingerprints may

not have a clear boundary due to smudges and background noise. In this chapter, we propose a

feature selection and learning based classification approach for segmenting fingerprint foreground

from background. As shown in Figure 4-2, the interleaving ridge-valley patterns and the back-

ground are much clearer and distinct in live-scan fingerprints than in latent fingerprints. Therefore,

?

(a)

(b)

Figure 4-1: (a) Sample latent fingerprint images from the NIST SD-27 database [4] demonstrat-
ing the effect of background information on ridge information and (b) latent fingerprint samples
illustrating the problem of segmentation.
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(a) (b) (c)

(d)

Figure 4-2: Sample latent fingerprints illustrating the distinct nature of foreground ridge patterns
and background. (a) inked fingerprints, (b) live-scan fingerprints, and (c) latent fingerprints.

any single feature or a category of features is unlikely to yield proper segmentation results across

all kinds of latent fingerprints lifted from different surfaces. Also, to accommodate the variations

in the ridge patterns and to make generalized conclusions, the segmentation algorithm needs to

select useful features and to learn the difference between background and foreground regions from

these features. Inspired from these observations, the proposed approach extracts a composite set of

features to represent latent fingerprint ridge patterns, performs feature selection, and classification

for improved accuracy. The key research contributions of this research are:

∙ Latent fingerprint segmentation is modeled as a learning based two-class classification prob-

lem with foreground and background being the two classes. To the best of our knowledge,

no classification based segmentation approach has been proposed for latent fingerprints.

Though in live-scan fingerprints, there are classification based segmentation approaches

[147], [9], [148], [149], the nature of latent fingerprints (with poor ridge features, varying

background, overlapping foreground-background information) cause difficulty in applying

existing algorithms on these images. The problem is further exacerbated with the availability

of small sample size latent fingerprints databases where classes have high intra-class varia-

tions. Traditional classifiers such as SVM and Neural Network on such databases may not
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Figure 4-3: Illustrating the steps involved in the proposed RDF based latent fingerprint segmen-
tation algorithm. A composite set of features is extracted from every local block and a random
decision forest based binary classifier is used to classify the foreground regions from background.

yield good classification results. Therefore, RDF classifier, which is an ensemble of multiple

decision trees, is utilized to classify the extracted features into the two classes.

∙ We propose image saliency as a key feature for latent fingerprint ROI detection. To the best

of our knowledge, saliency has not been used for fingerprint segmentation in literature. It is

observed that salient regions of an image contain the foreground ridge information. How-

ever, for some instances, the background has very distinct, salient objects other than fin-

gerprints. Therefore, along with saliency based features we combine image intensity based

features and fingerprint specific features (gradient based, ridge based, and quality based) to

obtain a more robust representation of the fingerprint ridge patterns. We grouped many of

the existing features into five categories to perform a more system study on the foreground

representation.

∙ A modified RELIEF formulation is proposed to perform feature selection and study optimal

features for fingerprint segmentation which are finally used for classification.

∙ The performance of the proposed algorithm is evaluated using two different databases: (1)

NIST SD-27 database [4] and (2) IIITD-CLF database, which is a combination of IIIT-D

latent fingerprint database [137] and IIITD-SLF [105]. The segmentation performance is

evaluated in terms of multiple metrics: (1) SIVV based metric for evaluating the effect of

segmentation, (2) segmentation accuracy (SA) which captures the amount of useful infor-

mation retained after segmentation, and (3) matching accuracy (MA) which captures the
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contribution of segmentation process in improving the latent fingerprint matching perfor-

mance.

4.2 Proposed Segmentation Algorithm

Latent fingerprint segmentation is formulated as a binary classification problem where every local

region is classified as either foreground or background. As illustrated in Figure 4-3, the proposed

segmentation algorithm consists of local block tessellation, feature extraction, and feature selection

followed by RDF based binary classification.

4.2.1 Feature Extraction

Determining whether a local block contains fingerprint patterns requires extracting patterns that are

very specific to fingerprints (e.g. ridge patterns). A significant amount of research has undergone

in describing ridge patterns or segmenting inked and live-scan fingerprints [147], [9], [148], [149].

The features used for distinguishing fingerprint foreground and background can be classified into

five categories namely:

1. Saliency-based features: General saliency based features can be used to define the most

salient regions in a latent fingerprint image.

2. Image intensity-based features: Features such as intensity mean, variance, and ridge clus-

ter degree can be grouped into image intensity based features.

3. Gradient-based features: Features such as ridge orientation, variance along and normal to

the ridge orientation flow, and symmetric orientation response can be categorized as gradient

based features.

4. Ridge-based features: Features such as inter-ridge distance, ridge frequency, and ridge

angular bandwidth belong to ridge based features.

5. Quality-based features: Features such as ridge energy and ridge continuity map measure

the quality of local ridge blocks.
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Let 𝐼 be the input latent fingerprint image and 𝐼(𝑖, 𝑗) denote the intensity at pixel coordinates

(𝑖, 𝑗). The image is tessellated into local blocks of size 𝑤 × 𝑤 and five categories of features

(mentioned above) are extracted from every local block.

Saliency-based features

In an image, a salient region is defined as the region which is noticed first by a human eye [150]. In

general, salient regions are the most informative regions in an image and in the case of fingerprint,

it is generally the foreground that we notice first. Therefore, saliency-based features are applied to

segment foreground from background. Here, two such features are used, orientation and intensity

of the intermediate neighborhood, that help in generating the saliency map of a fingerprint image.

As studied by Harol et al. [151], a saliency map gives higher values in the most salient regions

i.e. the fingerprint region along with some prominent background regions. Thus the intermediate

features, intensity and orientation (𝑓1−𝑓2), should give a similar higher response in the foreground

as shown in Figure 4-4. The saliency features are computed as follows:

(i) Salient Intensity (𝑓1): This feature is related to the saliency of a pixel, which is computed as

the dissimilarity of the given pixel with respect to its 𝑤×𝑤 neighborhood (in terms of image

intensity). The dissimilarity measure is weighted by a Gaussian function,

𝑓1 =

𝑤
2∑︁

𝑖=−𝑤
2

𝑤
2∑︁

𝑗=−𝑤
2

⃒⃒⃒⃒
log

𝐼(𝑥, 𝑦)

𝐼(𝑥+ 𝑖, 𝑦 + 𝑗)

⃒⃒⃒⃒
· exp

(︂
−𝑖

2 + 𝑗2

2𝜎2

)︂
(4.1)

where, (𝑥, 𝑦) is the center pixel of the local block and 𝜎 is a free variable which is assigned

the value 0.5. Higher value of dissimilarity in the local block represents that the region is

more salient.

(ii) Salient Orientation (𝑓2): This feature is computed by the summation of the Gabor filter

responses along two orientations: 0 degrees and 90 degrees. The orientation feature is calcu-

lated as follows:

𝑓2 = 𝑎𝑏𝑠(𝐹 ∙𝐺(0)) + 𝑎𝑏𝑠(𝐹 ∙𝐺(90)) (4.2)

where, 𝐹 is the Fourier transform output of the local block. 𝐺(0) and 𝐺(90) are the Gabor
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(a) (b) (c)

Figure 4-4: (a) A sample image from the NIST SD-27 database with corresponding saliency-based
(b) intensity feature (𝑓1), and (c) orientation feature (𝑓2).

(a) (b)

Figure 4-5: Sample local blocks from the NIST SD-27 database with (a) foreground ridge blocks
and (b) noisy background blocks. Varying image intensity patterns can be observed between the
foreground and the background blocks.

filters along zero degrees and 90 degrees, respectively and < ∙ > denotes 2D convolution.

Though saliency extraction algorithm [151] is designed for natural images, we observe that the

approach provides useful saliency maps in fingerprints as well, that can be used for segmentation.

It is to be noted that saliency of all the pixels are computed and then block-wise features are

extracted.

Image intensity-based features

In a latent fingerprint image, the variation in intensity values is usually definite along the ridges

and valleys when compared to noisy background regions. Further, as shown in Figure 4-5, the
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properties of image intensity in a local region of the foreground is different from the image intensity

of the background. These properties are extracted using three different intensity-based features.

(i) Difference of means (𝑓3) computes the difference between the local intensity mean and the

global intensity mean. As a result of varying intensities in the background and foreground,

the global intensity mean would be closer to average grayscale value. For a local foreground

fingerprint region, due to the interleaved ridge-valley structures, the mean intensity value

would be closer to average grayscale value of the image than compared to a background

region. Therefore, ideally the difference of means should be lower in the foreground as

compared to background.

𝑓3 =

(︃
1

𝑤2

𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝐼(𝑖, 𝑗)

)︃
− 𝐼𝑚𝑒𝑎𝑛 (4.3)

where 𝐼𝑚𝑒𝑎𝑛 is the mean intensity of the complete image.

(ii) Variance (𝑓4) calculates the intensity variance in a 𝑤×𝑤 image block. Since the variance in

an interleaved ridge-valley structure would be higher, high variance is expected in a finger-

print region as compared to background.

𝑓4 =
1

𝑤2

𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

(︃
𝐼(𝑖, 𝑗)− 1

𝑤2

𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝐼(𝑖, 𝑗)

)︃2

(4.4)

(iii) Ridge cluster value (𝑓5) indicates the clustering between the ridge pixels. This feature com-

bines the properties of both mean and variance to capture the ridge-valley structure in a

fingerprint foreground region. It can be calculated as follows [152]:

𝑓5 =
𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑣1(𝑖, 𝑗)× 𝑣2(𝑖, 𝑗) (4.5)

where

𝑣1(𝑖, 𝑗) =

⎧⎪⎨⎪⎩1 if 𝐼(𝑖, 𝑗) < 𝐼𝑚𝑒𝑎𝑛

0 otherwise,
(4.6)
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(a) (b)

Figure 4-6: Sample local square blocks from the NIST SD-27 database with (a) dominant orthog-
onal orientation observed in a foreground ridge block, (b) no dominant direction found in a noisy
background block.

𝑣2(𝑖, 𝑗) =

⎧⎪⎨⎪⎩1 if 𝑠(𝑖, 𝑗) <
(︁
𝑛2

2
+ 1
)︁

0 otherwise.
(4.7)

𝑠(𝑖, 𝑗) =

𝑥=𝑖+𝑛
2∑︁

𝑥=𝑖−𝑛
2

𝑦=𝑗+𝑛
2∑︁

𝑦=𝑗−𝑛
2

𝑣1(𝑥, 𝑦) (4.8)

Here, 𝐼𝑚𝑒𝑎𝑛 is the global mean intensity and the number of pixels 𝑠, in the neighborhood

𝑛 × 𝑛 that have intensity lower than 𝐼𝑚𝑒𝑎𝑛 (typically valley regions) is measured. 𝑠 tends

to be larger in uniform background regions than in ridge-valley like regions. Feature 𝑓5

measures the number of pixels in a local block 𝑤 × 𝑤 whose 𝑠 value is below a specific

threshold. Thus 𝑓5 maybe a robust measure even in regions with broken or noisy ridges.

Gradient-based features

The gradient of an image is used to capture the directional change in pixel intensities along a

direction. This change in directional flow will be more regular in a fingerprint region as compared

to background where the noise gives a non-directional change in the flow [153]. Gradient is also

being used to estimate the orientation of ridges in local regions as shown in Figure 4-6. For a

latent fingerprint image 𝐼 , let [𝐼𝑥, 𝐼𝑦] be the gradient along 𝑥 and 𝑦 directions, respectively. The

orientation at location (𝑖, 𝑗) is calculated as:
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𝑂(𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜋/4 𝑐1 = 0, 𝑐2 < 0

3𝜋/4 𝑐1 = 0, 𝑐2 ≥ 0

𝜃𝐼(𝑖, 𝑗) + 𝜋/2 𝑐1 > 0

𝜃𝐼(𝑖, 𝑗) 𝑐1 < 0, 𝑐2 ≤ 0

𝜃𝐼(𝑖, 𝑗) + 𝜋 𝑐1 < 0, 𝑐2 > 0

(4.9)

𝜃𝐼(𝑖, 𝑗) =
1

2
𝑡𝑎𝑛−1

(︂
𝑐2
𝑐1

)︂
(4.10)

where, 𝑐1 and 𝑐2 are defined as follows:

𝑐1 =
𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

(︀
𝐼2𝑥(𝑖, 𝑗)− 𝐼2𝑦 (𝑖, 𝑗)

)︀
(4.11)

𝑐2 =
𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

2 · 𝐼𝑥(𝑖, 𝑗) · 𝐼𝑦(𝑖, 𝑗) (4.12)

The gradient properties are formulated using six different features that are explained below.

(i) Ridge orientation (𝑓6) is computed by smoothing the orientation over the block using a

Gaussian smoothing kernel [154].

𝑓6 =
1

𝑤2

𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑂′(𝑖, 𝑗) (4.13)

𝑂′(𝑖, 𝑗) =
1

2
𝑡𝑎𝑛−1

(︂
𝑠𝑖𝑛(2𝑂(𝑖, 𝑗)) *𝐺(𝑖, 𝑗)
𝑐𝑜𝑠(2𝑂(𝑖, 𝑗)) *𝐺(𝑖, 𝑗)

)︂
(4.14)

where,𝐺 is the Gaussian smoothing kernel of size 3×3 and𝑂(𝑖, 𝑗) is defined in Equation 4.9.

(ii) Sum of squared gradient (𝑓7) represents the sum of squares of the gradient values of a

local block. The interleaving ridge-valley pattern provides a change in flow that is higher as

compared to the noisy background.

𝑓7 =
√︁
𝑐21 + 𝑐22 (4.15)
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(iii) Sum of norm of squared gradient vector (𝑓8) is computed as:

𝑓8 =
𝑤∑︁
𝑖=1

𝑤∑︁
𝑗=1

⎯⎸⎸⎸⎷(︀
𝐼2𝑥(𝑖, 𝑗)− 𝐼2𝑦 (𝑖, 𝑗)

)︀2
+

(2 · 𝐼𝑥(𝑖, 𝑗) · 𝐼𝑦(𝑖, 𝑗))2
(4.16)

(iv) Variance of projected axis parallel to orientation (𝑓9) is calculated by computing the ridge

variation in the direction parallel to the estimated local block orientation. A projection win-

dow of size 𝐵 × 𝐻 , which is smaller than the block size and whose center overlaps with

center of the local block (𝑘, 𝑙) is used to compute 𝑓9:

𝑓9 =

𝐵/2∑︁
𝑙=−𝐵/2

⎛⎝𝑃𝑣[𝑙]− 𝐵/2∑︁
𝑘=−𝐵/2

𝑃𝑣[𝑘]/𝐵

⎞⎠2

(4.17)

where,

𝑃𝑣[𝑘] =
1

𝐻

𝐻/2∑︁
ℎ=−𝐻/2

𝐼(𝑖− ℎ · 𝑠𝑖𝑛(𝑂(𝑖, 𝑗)) + 𝑘 · 𝑐𝑜𝑠(𝑂(𝑖, 𝑗)),

𝑗 + ℎ · 𝑐𝑜𝑠(𝑂(𝑖, 𝑗)) + 𝑘 · 𝑠𝑖𝑛(𝑂(𝑖, 𝑗)))

(4.18)

(v) Variance of projected axis orthogonal to orientation (𝑓10) is calculated by computing ridge

variation in the direction normal to the estimated local block orientation. Similar to 𝑓9, a

projection window of size 𝐵 × 𝐻 perpendicular to the estimated orientation of ridges is

considered and the features are computed as follows:

𝑓10 =

𝐵/2∑︁
𝑙=−𝐵/2

⎛⎝𝑃ℎ[𝑙]− 𝐵/2∑︁
𝑘=−𝐵/2

𝑃ℎ[𝑘]/𝐵

⎞⎠2

(4.19)
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where,

𝑃ℎ[𝑘] =
1

𝐻

𝐻/2∑︁
ℎ=−𝐻/2

𝐼(𝑖+ ℎ · 𝑐𝑜𝑠(𝑂(𝑖, 𝑗)) + 𝑘 · 𝑠𝑖𝑛(𝑂(𝑖, 𝑗)),

𝑗 + ℎ · 𝑠𝑖𝑛(𝑂(𝑖, 𝑗))− 𝑘 · 𝑐𝑜𝑠(𝑂(𝑖, 𝑗)))

(4.20)

As suggested by Zhu et al. [149], a projection window of size 12 × 9 has been used for

calculating both 𝑓9 and 𝑓10. In foreground ridge-like regions, 𝑓9 exhibits very low variance

whereas 𝑓10 exhibits high variance. In background regions, 𝑓9 and 𝑓10 remain almost constant

without much variation.

(vi) Mean of symmetry and texture patterns (𝑓11 − 𝑓15): Let the complex representation of an

image be denoted as 𝑧 = 𝐼𝑥 + 𝑖𝐼𝑦. As shown by Choi et al. [6], the 𝑛𝑡ℎ order symmetric

decomposition of the orientation response of an image block can be computed using:

[𝑓11, 𝑓12, 𝑓13, 𝑓14, 𝑓15] = {𝑠0, 𝑠1, 𝑠−1, 𝑠2, 𝑠−2} (4.21)

𝑠𝑛 =
< 𝑧, ℎ𝑛 >

< 𝑎𝑏𝑠(𝑧), 𝑎𝑏𝑠(ℎ𝑛) >
(4.22)

ℎ𝑛 =

⎧⎪⎨⎪⎩(𝑥+ 𝑖𝑦)𝑛 ∙𝐺 if 𝑛 ≥ 0

(𝑥+ 𝑖𝑦)|𝑛| ∙𝐺 otherwise
(4.23)

where, 𝐺 is the Gaussian filter with 𝜎 = 8 and < ∙ > denotes 2D convolution. The orienta-

tion response of an image block is decomposed into five symmetric orders providing features

𝑓11 − 𝑓15 for 𝑛 = 0,±1,±2 respectively. The peak response for 𝑠0 is obtained in fore-

ground ridge-like regions whereas 𝑠1, 𝑠−1, 𝑠2, and 𝑠−2 give peak response in the background

regions [155].

Ridge-based features

As shown in Figure 4-7, a latent fingerprint may contain many ridge like noisy patterns belonging

to other fingers in the background. To differentiate the actual fingerprint from such noisy patterns,

the properties of ridges are extracted to effectively test the presence of ridge patterns [156]. The
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Figure 4-7: Sample images from the NIST SD-27 database showing noise in latent fingerprint
images. The yellow dotted lines are the actual fingerprint regions while the red full lines are ridge
like noisy regions in the background.

four different features that have been utilized in this research to encode ridge information are:

(i) Average inter-ridge distance (𝑓16): Ridge peaks in the local block are computed using the

gradient approach [9]. The mean of absolute difference between any two consecutive peaks

is denoted as 𝑓16 and is computed as follows:

𝑓16 =

∑︀𝑛
𝑘=1 𝑎𝑘
𝑛− 1

(4.24)

where, 𝑛 is the number of peaks in the ridges and 𝑎𝑘 is the distance between two consecutive

peak values. As the number of ridges is higher in a fingerprint region, the inter-ridge distance

here would be less as compared to background.

(ii) Variance of peak heights in ridges (𝑓17): It estimates the variations in ridge pressure that

can be observed in a local block of a latent fingerprint. It can be computed as follows:

𝑓17 =

∑︀𝑛
𝑘=1(𝑃𝑅𝑘 − 𝑃𝑅𝑚𝑒𝑎𝑛)

𝑛− 1
(4.25)

where, 𝑛 is the number of peaks in the ridges, 𝑃𝑅𝑘 is the value of the peak ridge height for
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the 𝑘𝑡ℎ ridge, and 𝑃𝑅𝑚𝑒𝑎𝑛 is the mean of the peak ridge heights across all the blocks. A

higher response is expected in a fingerprint region as compared to a non-fingerprint region.

(iii) Ridge frequency (𝑓18) is calculated by applying Fourier transform to every local block, com-

monly known as STFT [154]. The magnitude spectrum of frequency response is multiplied

with a set of directional filters with varying frequencies. The frequency of the filter at which

the maximum response is obtained, is considered to be the ridge frequency of the local block.

𝑓18 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙

(︃
𝑤∑︁
𝑢=1

𝑤∑︁
𝑣=1

|𝐹 (𝑢, 𝑣)| *𝑊𝑙(𝑢, 𝑣)

)︃
(4.26)

where, 𝐹 (𝑢, 𝑣) is the Fourier transform output of the local image block and𝑊𝑙(𝑢, 𝑣) is the 𝑙𝑡ℎ

directional filter. Since a ridge-valley structure can be interpreted as a sinusoidal structure,

the frequency response is higher in a structured fingerprint region as compared to a noisy and

unstructured background region.

(iv) Angular bandwidth (𝑓19): Similar to 𝑓18, STFT is applied and peak response is calculated

for every block. The bandwidth of directional filter along the local estimated orientation that

provides the peak response is the angular bandwidth of ridges for the local block.

Quality-based features

Assessing the quality information in a local fingerprint region is very useful for segmentation. The

quality of ridge patterns acts as a measure of confidence of the features extracted in the local region.

Foreground regions should have a higher quality information compared to the noisy background

regions. The quality features are extracted as follows:

(i) Ridge energy (𝑓20): The STFT response of a local fingerprint block is subjected to a band-

pass filter allowing only the specified ridge frequencies to pass [157]. The ridge energy is

computed as follows:

𝑓20 =
1

𝑤2

(︃
𝑤∑︁
𝑢=1

𝑤∑︁
𝑣=1

(|𝐹 (𝑢, 𝑣)| ∙𝑊𝑙′(𝑢, 𝑣))
2

)︃
(4.27)

where, 𝑊𝑙′(𝑢, 𝑣) is the 𝑙′ directional filter giving the highest response. The ridge energy

81



provides the “ridgeness" of the local region and is expected to be higher in a fingerprint

region.

(ii) Ridge energy after clustering (𝑓21): The Fourier response of a local block is initially clus-

tered into two regions using k-means clustering and smoothed using a Gaussian filter [158].

Then, similar to 𝑓20, energy in a local block is calculated.

(iii) Ridge continuity map (𝑓22): Every local block is modeled with two 2D sine waves, 𝒮1

and 𝒮2, corresponding to the top two local amplitude maxima of ridge intensity [159]. An

indicator function is created to check if the waves in consecutive blocks (in a 8-neighborhood

condition) are continuous.

𝐼𝑐(𝒮1,𝒮2) =

⎧⎪⎨⎪⎩1 if 𝒮1,𝒮2 are continuous

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.28)

The ridge continuity map is then calculated as

𝑓22 =
∑︁
𝒮′
𝑖∈𝑁

𝑚𝑎𝑥{𝐼𝑐(𝒮1,𝒮 ′
1), 𝐼𝑐(𝒮1,𝒮 ′

2)} (4.29)

where 1 ≤ 𝑁 ≤ 8 and 𝒮 ′
𝑖 are the blocks belonging to the neighborhood 𝑁 . This ridge

continuity measurement gives a higher response in a good quality fingerprint region.

(iv) Ridge clarity map (𝑓23): Ridge clarity map can be calculated by multiplying the peak mag-

nitude value of every local block, 𝑎1, with the corresponding ridge continuity map value. The

response of ridge clarity map is high in a good quality fingerprint region but is robust against

background patterns that look similar to ridge-valley patterns.

𝑓23 = 𝑎1.𝑓22 (4.30)

Thus, a composite set of 23 features {𝑓1, 𝑓2, . . . , 𝑓23} is utilized for differentiating the foreground

ridge patterns from a (noisy) background. A summary of all the category-wise features is provided

in Table 4.1. It is our hypothesis that image saliency potentially detects the latent print region in

the image along with few other salient regions. Thus, when saliency features are combined with
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Table 4.1: Summary of features used to represent the foreground ridge features.

Saliency Image in-
tensity

Gradient Ridge Quality

𝑓1
𝑓2

Intensity
Orientation

𝑓3

𝑓4
𝑓5

Difference
of mean
Variance
Ridge
cluster
value

𝑓6
𝑓7
𝑓8

𝑓9

𝑓10

𝑓11
𝑓15

Ridge orientation
Sum of squared gradient
Sum of norm of squared
gradient
Variance of projected axis
parallel to orientation
Variance of projected axis
orthogonal to orientation
Mean of symmetry and
texture patterns

𝑓16

𝑓17

𝑓18

𝑓19

Average inter-
ridge distance
Variance of
peak heights
in ridges
Ridge fre-
quency
Angular
bandwidth

𝑓20
𝑓21

𝑓22

𝑓23

Ridge energy
Ridge energy
after clustering
Ridge continu-
ity map
Ridge clarity
map

fingerprint specific features, the false positive regions could be minimized resulting in only the

required ROI.

4.2.2 Feature Selection

The proposed algorithm utilizes an aggregation of 23 features. However, not all of them are equally

distinctive and can differentiate between foreground and background efficiently. Therefore, in the

proposed algorithm, we perform feature selection to select highly discriminative features so that

the classification algorithm provides improved (and meaningful) output. The effectiveness of the

extracted features is evaluated individually for segmentation. Choosing a subset of relevant fea-

tures for better performing the task at hand is a challenging research problem [160], [161]. In a

binary classification setting, RELIEF [162] is a noise-tolerant, linear time feature selection algo-

rithm that gives good results in the presence of higher training instances. The main advantage of

RELIEF feature selection is its simplicity and it does not depend on any heuristics or assumptions.

Let 𝑊 be the weight vector calculating the relevance of each feature 𝑖. The standard RELIEF

feature selection method is given as follows:

𝑊𝑖 = 𝑊𝑖 − (𝑋𝑖 −𝑁𝐻𝑖)
2 + (𝑋𝑖 −𝑁𝑀𝑖)

2 (4.31)

where, 𝑋𝑖 refers to the 𝑖𝑡ℎ training instance, 𝑁𝐻𝑖 is the “near-hit" instance of 𝑖 denoting the

nearest neighbor of 𝑋𝑖 that belong to the same class of 𝑋𝑖, while 𝑁𝑀𝑖 is the “near-miss" instance
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denoting the nearest neighbor of 𝑋𝑖 belonging to its opposite class. Here, the nearest neighbor is

calculated using Euclidean distance measure. It can be understood that the relevance of the weight

value reduces if the near-hit of a particular point is at farther distance compared to its near-miss

neighbour.

As studied by Robnik-Šikonja and Kononenko [163], RELIEF formulation can be optimized

and modified by doing the following:

1. Use ℓ1-norm to find the neighbours of 𝑋𝑖 instead of using Euclidean distance

2. Calculate the absolute difference between the points, instead of squared difference

3. Choose 𝑘-nearest neighbours of an instance 𝑋𝑖 instead of the single nearest neighbour.

The modified formulation of RELIEF feature selection used in this experiment is as follows:

𝑊𝑖 = 𝑊𝑖 −
𝑘∑︁
𝑝=1

|𝑋𝑖 −𝑁𝐻
(𝑝)
𝑖 |+

𝑘∑︁
𝑞=1

|𝑋𝑖 −𝑁𝑀
(𝑞)
𝑖 | (4.32)

where, |.| represents the absolute difference between the features, 𝑁𝐻 is the near-hit vector denot-

ing the k-nearest neighbours of 𝑋 that belong to the same class of 𝑋 , while 𝑁𝑀 is the near-miss

vector denoting the k-nearest neighbours of 𝑋 belonging to its opposite class. In our experiments,

𝑘 = 20 is empirically observed to be optimal. A threshold is empirically applied on the weight

vector and all the features contributing more than this threshold are considered in the optimal set

of features for segmenting latent fingerprints.

4.2.3 Classification using RDF

A non-linear classification algorithm should potentially produce a sophisticated classification bound-

ary between {background, foreground} using the extracted feature. In this approach, every local

block in a latent fingerprint is classified into foreground and background using Random Deci-

sion Forest [164]. RDF is a non-linear ensemble classifier consisting of multiple decision trees.

It has been shown in literature that RDF yields good classification results for high dimensional

data [165], [166]. NIST uses RDF as the classifier in their well-received latent print quality as-

sessment algorithm NFIQ-2 [71]. The repetitive random sub-sampling strategy employed by RDF
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helps in providing robust and quicker results for overlapping features. Let 𝑁 be the total number

of data points, 𝑀 be the number of predictor variables (features), and 𝐶 be the total number of

classes in a given data. A forest containing 𝑇 trees is trained as follows:

1. For a ratio 𝑟 (0.5 < 𝑟 ≤ 1), several bootstrap aggregates, each of size 𝑟.𝑁 , are created with

replacement from the data.

2. Every decision tree, 𝑡, in the forest is trained with a single bootstrap of the data, thus creating

an ensemble of classifiers.

3. At every node in the decision tree, a random feature sample, 𝑚 (typically 𝑚 =
√
𝑀 ) is used

to take the split decision based on an objective function.

4. Class labels 𝑐 (𝑐 ∈ {1, . . . , 𝐶}) are assigned to leaf nodes depending on the label associated

with the corresponding training sample. Collision resolution techniques can be used if a

particular leaf node receives multiple class labels through multiple paths.

An input test sample is classified using the trained classifier as follows:

1. The candidate set of features extracted from local blocks of a latent fingerprint are provided

as input to the RDF.

2. Every individual decision tree, 𝑡, predicts a class label, 𝑜𝑡𝑖, through repeated sub-sampling

of features at every node.

3. The final predicted class label, 𝑝, is obtained from the ensemble of classifiers using a majority

voting technique.

𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗∈𝐶

⎡⎢⎢⎣
𝑇∑︀
𝑖=1

(𝑜𝑡𝑖 == 𝑐𝑗)

𝑇

⎤⎥⎥⎦ for j={1,2,. . . ,C}. (4.33)

In the RDF implementation, for classifying 𝐶 = 2 classes, 𝑇 = 1000 independent decision trees

are created with a bootstrap ratio of 𝑟 = 0.66. At every node in a decision tree, 𝑚 = 5 features are

randomly sampled from 𝑀 = 23 features.
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(a) (b)

(c) (d)

Figure 4-8: An example showing the post-processing performed on the classification output to
arrive at the final segmentation output. (a) original input latent fingerprint, (b) classifier output of
segmentation, (c) final segmentation boundary obtained after post-processing, and (d) an elliptical
window fitted over the segmented region.

4.2.4 Representing Segmented Latent Prints

The output of a segmentation algorithm can take multiple forms. It is important to define a stan-

dard representation scheme for segmentation of latent fingerprints. In this research, we represent

segmentation as a single 𝑛-degree polygonal boundary of the region of interest. The size of the

output image is kept same as the input, with all the background information blacked out. Even if

the background contains other partial fingerprints (ridge patterns), they are still treated as back-

ground and thus removed. To achieve such a standard representation, as shown in Figure 4-8, the

following post processing steps are performed for the masks obtained from the classifier output:

∙ The predicted classifier output contains blocks predicted as foreground or background, as

shown in Figure 4-8 (b). Two iterations of morphological erosion are applied using a square

86



structuring element of size same as the local block size. This helps in removing the false

positives, that is, the background blocks that are classified as foreground.

∙ The largest connected component region in the image is then found using the standard run-

length encoding technique [167]. Only the largest connected region is retained while the

remaining blocks are regarded as background.

∙ A convex hull is fitted over the largest connected region, which gives the polygonal mask

for the segmented region. The entire region within this boundary is filled as foreground to

obtain the processed segmented output of the latent fingerprint, as shown in Figure 4-8 (c).

The processed segmented latent fingerprint acts as a better input for an AFIS system. It is to be

noted that in special applications where the background ridge-like regions are required as well, the

post processing stage can be skipped and the output of the classifier can be taken as such.

4.3 Evaluation Metrics for Latent Fingerprint Segmentation

The efficacy of a fingerprint segmentation algorithm is generally evaluated using matching accu-

racy. However, matching performance does not completely capture the performance of the seg-

mentation algorithm as it includes the performance of other stages such as feature extraction as

well. In cases where the ground truth segmentation is available, we propose to use segmentation

accuracy (SA) to determine the effectiveness of a segmentation algorithm. Segmentation accuracy

is represented in terms of the foreground segmentation accuracy (FSA) and background segmen-

tation accuracy (BSA).

As ground truth of segmentation is not always available in practical situations, there is a need

for a metric to evaluate the segmentation algorithm without ground truth. A recent NIST re-

port [146] and the work by Guan et al. [168] have proposed a new metric for evaluating the effect

of preprocessing on latent fingerprints based on SIVV [169]. SIVV based True-Positive Rate

(SIVV-TPR) metric finds the number of correct peaks detected in the 1-D normalized polar trans-

form of the power spectrum of the latent print. A peak does not randomly occur in the frequency

spectrum. As proposed in [168], a peak constraint metric is included to search for the peaks in a

specific bandwidth in the frequency spectrum, to minimize the detection of false positive peaks.

87



Thus, this metric could potentially evaluate the performance of the preprocessing stage, without

performing the entire matching procedure. The major limitations of this metric are:

∙ Shape of ROI: A rectangular ROI around the latent print region has to be manually chosen

by an expert. A tighter boundary estimate, extracted automatically, will provide a better

segmentation of latent fingerprints.

∙ Shape of Blackman window: A circular Blackman window filter is applied prior to spectral

analysis. Typically, a latent fingerprint is elliptical in shape and thus a circular filter will

result in loss of information.

To address these limitations, we have proposed the following modifications to the SIVV metric:

(i) a polygonal ROI is used instead of a rectangular ROI to represent the segmented latent print,

and (ii) an elliptical Blackman window is used for filtering instead of a circular filter. Thus, the

metrics used to measure the performance of latent fingerprint segmentation are:

1. SIVV based True-Postive Rate (SIVV-TPR) metric [146] is defined as:

𝑆𝐼𝑉 𝑉 − 𝑇𝑃𝑅 =
Number of correct peaks detected
Total number of peaks detected

(4.34)

2. Segmentation accuracy is the ability of a classifier to correctly classify image blocks into

foreground and background. It is defined as:

𝑆𝐴 =
𝐶𝐶𝐵

𝑇𝐵
(4.35)

where, 𝐶𝐶𝐵 is the number of correctly classified blocks and 𝑇𝐵 is the total number of

blocks. FSA can be calculated as,

𝐹𝑆𝐴 =
𝐶𝐶𝐹𝐵

𝑇𝐹𝐵
(4.36)

where, 𝐶𝐶𝐹𝐵 is the number of correctly classified foreground blocks and 𝑇𝐹𝐵 is the total

number of foreground blocks in the ground truth image. Similarly, background segmentation

accuracies can be calculated as,

𝐵𝑆𝐴 =
𝐶𝐶𝐵𝐵

𝑇𝐵𝐵
(4.37)
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where, 𝐶𝐶𝐵𝐵 is the number of correctly classified background blocks and 𝑇𝐵𝐵 is the total

number of background blocks in the ground truth images.

3. Matching accuracy is the fraction of latent images that are correctly identified at a given rank

𝑘, when matched with the corresponding gallery of live-scan images.

4.4 Experimental Results

The performance of the proposed segmentation algorithm is evaluated on three publicly available

latent fingerprint databases. The algorithm is also analyzed to determine the optimal set of features

that would best discriminate the ridge regions from the remaining background. The databases,

evaluation metrics, and experimental protocol are described below along with the results.

4.4.1 Datasets

The results are shown on an inked fingerprint database and three publicly available latent finger-

print databases:

∙ NIST SD-4 database [122] is an inked fingerprint database consisting of 2000 rolled fin-

gerprints pairs having very high quality ridge information with very minimum background

variation.

∙ NIST SD-27 database [4] consists of 258 latent fingerprint images grouped into three quality

labels: Good, Bad, and Ugly. It has mated rolled fingerprints for every latent print and also

contains manually annotated minutiae for latent fingerprints.

∙ IIIT-D Latent Fingerprint database [137] has 744 latent impressions from 11 subjects (all 10

fingers) with mated live-scan fingerprints.

∙ IIITD-SLF database [105] has 1080 latent impressions from 30 subjects (all 10 fingers) with

mated exemplar prints.

Since both the IIITD databases have been collected under similar environments, they are combined

to form the IIITD-CLF database. After combining, it consists of 1824 latent images from 41 sub-

jects with multiple impressions of each finger. In these two sets of latent fingerprint databases,
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Table 4.2: Experimental protocol for the NIST SD-4, NIST SD-27, and IIITD-CLF databases.
Inked fingerprints from 2000 classes of the NIST SD-4 database are added to extend the gallery.

Database Training Testing Gallery Image Size Block Size
NIST SD-4 1000 1000 - 832× 768 32× 32

NIST SD-27 129 129 258 + 2000 800× 768 32× 32
IIIT-D CLF 544 1280 820 + 2000 256× 400 16× 16

NIST SD-27 has real forensic fingerprints with high variation in quality whereas IIITD-CLF

database has large number of fingerprints collected in simulated lab environments.

4.4.2 Experimental Protocol

The experimental protocol is shown in Table 4.2. Since the NIST SD-27 database contains only

258 samples, 50% training and 50% testing protocol is followed. For the IIITD-CLF database,

a more challenging protocol of using one-third images for training and the remaining for testing

is adopted. NIST SD-4 also uses a 50-50% train-test protocol. Due to the variations in image

resolution in the databases, inked prints from NIST SD-4 and latent prints from the NIST SD-27

are divided into blocks of size 32× 32 while the images from the IIITD-CLF database are divided

into 16 × 16 blocks. The ground truth for segmentation is manually annotated for all the latent

prints from both the databases. A 𝑛−point contour is marked tangential to the foreground ridge

region thus obtaining a binary mask1. The binary mask is then tessellated into square blocks and

ground truth label for each block is assigned. In 2012, Ulery et al. [54] have suggested that since

latent examiners use their subjectivity and experience in latent fingerprint analysis, the results tend

to vary among human experts and may not be always reproducible. However, it is our assumption

that manually annotated segmentation results should not vary significantly across examiners and

therefore the performance analysis of the proposed algorithm also should not vary much with

the variations in ground truth. To remove any training bias, three times random cross validation is

performed on both the databases. The segmentation experiments are performed under the following

scenarios:

1. Results of all the features (𝑓1 − 𝑓23) are shown using the proposed RDF based classification

1The manually annotated segmented binary masks will be made publicly available for researchers through the
following link: http://iab-rubric.org/resources.html
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algorithm.

2. Results of only the saliency features (𝑓1 − 𝑓2) are shown using the proposed RDF based

classification scheme.

3. Results of the selected optimal features (varying size for each dataset) are shown using the

proposed RDF based classification scheme.

4. The effectiveness of RDF is demonstrated by comparing the performance of all the features

(𝑓1 − 𝑓23) with two other classifiers in literature - neural network and SVM. The neural

network consists of a three hidden layer architecture with {20, 10, 5} nodes each and a sin-

gle output node with sigmoid activation function. SVM (libSVM implementation in MAT-

LAB [170]) with a Radial Basis Function (RBF) kernel function (𝑐 = 8, 𝑔 = 2) is found

optimal.

4.4.3 Importance of Saliency

Feature selection is performed separately on NIST SD-4, NIST SD-27, and IIITD-CLF databases

and the features contributing to better classification are tabulated in Table 4.3. The following

important observations can be made based on the feature analysis:

∙ In all three databases, saliency (𝑓1) is one of the key features contributing towards segmen-

tation. This aspect is relatively unexplored in the literature of latent fingerprints. If saliency

features could be combined with fingerprint based features, a good representation of latent

print foreground region can be obtained, as visually demonstrated in Figure 4-9.

Table 4.3: RELIEF algorithm based feature analysis on NIST SD-4, NIST SD-27, and IIITD-CLF
databases. The most and least contributing features for segmentation on each database are also
obtained.

Database Best 3 features Worst 3 features Optimal features
NIST SD-4 {𝑓1, 𝑓14, 𝑓15} {𝑓22, 𝑓2, 𝑓21} {𝑓1, 𝑓14, 𝑓15, 𝑓12, 𝑓13}5

NIST SD-27 {𝑓1, 𝑓6, 𝑓19} {𝑓4, 𝑓2, 𝑓10} {𝑓1, 𝑓6, 𝑓19, 𝑓5, 𝑓18, 𝑓22}6
IIIT-D CLF {𝑓4, 𝑓5, 𝑓1} {𝑓3, 𝑓19, 𝑓6} {𝑓4, 𝑓5, 𝑓1, 𝑓9, 𝑓10, 𝑓8, 𝑓17, 𝑓16, 𝑓7, 𝑓23, 𝑓22,

𝑓20, 𝑓14, 𝑓12, 𝑓15, 𝑓13, 𝑓21, 𝑓18, 𝑓2, 𝑓11}20
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Figure 4-9: Illustrating the segmentation result of the proposed algorithm using two sample images
from NIST SD-27 by using (a) only saliency features (𝑓1, 𝑓2), (b) all other features except saliency
(𝑓3 − 𝑓23), and (c) all features (𝑓1, 𝑓23).

∙ Apart from saliency, other features contributing towards ridge representation (best 3 features)

are data dependent. This, as expected, explains the variation in ridge clarity in the databases

used in this experiment.

∙ In inked fingerprints (for example images from the NIST SD-4 database), the texture pattern

related features are more appropriate for segmentation while ridge continuity and energy

based quality features contribute the least.

∙ In the most popular latent fingerprint database NIST SD-27, it is observed that saliency

features and fingerprint specific features contribute more towards segmentation while in the

IIITD-CLF database, saliency features and image intensity based features contribute more

for segmentation. Thus, across databases, saliency based features are found to primarily
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contribute toward segmentation along with other features that are database specific.

∙ For a single latent fingerprint from the NIST SD-27 database, the average feature extraction

time on a Windows-7 desktop system with Intel i7 processor, 2.86𝐺𝐻𝑧 CPU, and 8𝐺𝐵

RAM is 15.95𝑚𝑠 while for the IIITD-CLF database it is 10.13𝑚𝑠. The computation time

for extracting only the optimal features on the same desktop system is 8.07𝑚𝑠 for NIST

SD-27 database and 8.38𝑚𝑠 for IIITD-CLF database.

4.4.4 Segmentation Performance

The objective of segmentation is to extract all the foreground regions while discarding the noisy

background regions. The results of the proposed segmentation algorithm are shown in Table 4.4

and Table 4.5. As segmentation is the first step in the feature extraction and matching pipeline,

the ideal situation is to have high foreground segmentation accuracy (FSA), with not very low

background segmentation accuracy (BSA), suggesting that the informative foreground region is

minimally lost while allowing some background (noisy) regions. The segmentation accuracy along

with FSA and BSA, when compared with the ground truth manual segmentation can be considered

as a good estimate of the performance of a segmentation algorithm. When the ground truth of

segmentation is not available, SIVV-TPR acts as a robust “as-is" metric to evaluate the performance

of latent segmentation without the need for performing matching. Key observations from the

segmentation results are as follows:

∙ Table 4.4 shows high segmentation accuracy of about 96% on inked fingerprints from NIST

SD-4 dataset. Also, the accuracy with using only the saliency features is about 78% while

using the optimal features is as high as 92%. These results validate the goodness of the

proposed algorithm and also the selection of optimal features.

∙ We analyze the performance of individual category of features on the NIST SD-27 database

and observe that saliency features provide the highest foreground segmentation accuracy of

73.4% whereas the FSA of other four features is less than 30%.

∙ From Table 4.4, it is observed that for latent prints in NIST SD-27 database, the proposed

RDF based algorithm (with all features) yields the best FSA of 83.41%. Also, in the IIITD-
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Table 4.4: Segmentation accuracy (SA), FSA and BSA (in %) of the proposed and existing seg-
mentation algorithms on the NIST SD-4, NIST SD-27, and IIIT-D combined latent fingerprint
databases.

Database Metric All Feat. +
SVM

All Feat. +
NN

All Feat. +
RDF

Saliency
Feat. + RDF

Optimal
Feat. + RDF

NIST SD-4
SA 91.84±0.2 95.10±0.7 96.11±0.3 78.25± 0.2 91.90± 0.0
FSA 92.54±0.3 98.94±0.6 95.76±0.2 79.90± 0.7 92.49± 0.0
BSA 91.37±0.2 92.15±0.6 96.35±0.2 77.14± 0.5 91.50± 0.0

NIST SD-27
SA 66.24±0.4 76.64±0.2 73.76±0.2 61.00± 0.1 66.35± 0.1
FSA 78.45±0.1 77.68±0.1 83.41±0.1 73.04± 0.1 85.11± 0.1
BSA 63.18±0.5 76.39±0.2 71.34±0.2 57.98± 0.1 61.63± 0.2

IIIT-D CLF
SA 89.33±0.6 93.47±0.2 93.57±0.2 60.34± 0.6 93.47± 0.1
FSA 91.59±0.7 93.01±0.1 93.23±0.2 56.26± 0.5 93.01± 0.1
BSA 87.41±0.4 93.84±0.1 93.84±0.3 63.73± 0.7 93.84± 0.3

Table 4.5: The SIVV-TPR improvement on the three databases, before and after segmentation.

Algorithm NIST SD-4 NIST SD-27 IIIT-D CLF
Unsegmented 0.9195± 0.007 0.3468± 0.04 0.4378± 0.066
Ground truth 0.9463± 0.005 0.5366± 0.033 0.5330± 0.014
All features + SVM 0.9267± 0.006 0.4726± 0.069 0.5092± 0.063
All features + Neural Network 0.9295± 0.009 0.4738± 0.047 0.5157± 0.045
All features + RDF 0.9325± 0.005 0.5168± 0.059 0.5512± 0.029
Saliency features + RDF 0.9330± 0.008 0.4757± 0.036 0.5354± 0.027
Optimal features + RDF 0.9410± 0.006 0.5274± 0.034 0.555± 0.024

CLF database it is observed that the proposed algorithm yields significantly higher segmen-

tation accuracy of 93.23%. This, in general, highlights the successful adaptive nature of the

proposed segmentation algorithm for different qualities of prints.

∙ In both the NIST SD-27 and IIITD-CLF databases, using only optimal features yield similar

segmentation performance as the complete feature set. This shows that the optimal feature

set is a comprehensive representation having foreground/background distinguishing capa-

bility comparable to the entire feature set. It is interesting to note that depending on the

database characteristics, optimal feature sets are different for each database but the salient

features are present for all three databases. From the No free lunch theorem, it is well un-

derstood that the same set of features may not yield best performance across all databases.

However, from the implementation perspective, there are two things to note: use of all the

features yield the best accuracy and requires 15 ms per test image whereas optimal features
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yield similar accuracy in 7 ms. Therefore, if the training database is available for feature

selection, then depending on the database characteristics, the optimal feature set can be se-

lected and used. If the training database is not available, then all 23 features can be used for

classification.

∙ From the results of NIST SD-27, it can be observed that using only saliency features (𝑓1, 𝑓2)

provides a FSA of about 73%, while addition of fingerprint specific features improves the

FSA to about 83− 85%. Similar improvements can be observed in IIITD-CLF and NIST-4

databases, as well. This observation is also visually demonstrated using sample images from

NIST SD-27 in Figure 4-9.

∙ The FSA of all the algorithms is comparatively higher for the IIITD-CLF database than the

NIST SD-27 database. This can be attributed to the fact that the NIST database has real

world images with significant amount of background information, whereas the IIITD-CLF

database is prepared in simulated lab environment with very little background noise such as

text and lines.

∙ From Table 4.5, it can be clearly observed in all three databases, that ground truth segmented

images show an improved SIVV-TPR rate compared to unsegmented images. This validates

the fidelity of the proposed SIVV-TPR metric and also highlights the necessity of segmenta-

tion in latent prints.

∙ The SIVV-TPR metric shows that in all the datasets, using optimal features with RDF classi-

fication and using all features with RDF classification provides segmentation that is compa-

rable to the ground truth segmentation. Thus, automatic segmentation of latent prints using

the proposed algorithm provides as good segmentation as ground truth, for both kind of

fingerprints (inked or different qualities of latent prints).

4.4.5 Comparison with Existing Feature Selection Algorithms

The modified RELIEF algorithm is compared with some popular feature selection algorithms [171]

available in literature: (i) Max-Relevance Min-Redundancy (MRMR) algorithm, (ii) Joint Mutual

Information (JMI) algorithm, (iii) Double Input Symmetrical Relevance (DISR) algorithm, and
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Table 4.6: Segmentation accuracy (SA), foreground segmentation accuracy (FSA), and back-
ground segmentation accuracy (BSA) (in %) of the proposed and existing feature selection algo-
rithms on the NIST SD-4, NIST SD-27, and IIITD-CLF databases.

Database Metric MRMR JMI DISR RELIEF Modified
RELIEF

NIST SD-4
FSA 89.18± 0.0 89.13± 0.0 89.16± 0.0 88.93± 0.0 92.49± 0.0
BSA 82.27± 0.0 82.12± 0.0 82.37± 0.0 82.51± 0.0 91.50± 0.0

NIST SD-27
FSA 39.45± 0.0 45.33± 0.0 45.33± 0.0 43.87± 0.0 85.11± 0.1
BSA 95.19± 0.0 93.76± 0.0 93.76± 0.0 94.71± 0.0 61.63± 0.2

IIIT-D CLF
FSA 96.98± 0.0 96.98± 0.0 96.97± 0.0 96.28± 0.0 93.01± 0.1
BSA 85.27± 0.0 85.27± 0.0 84.37± 0.0 83.14± 0.0 93.84± 0.3

(iv) RELIEF algorithm. These algorithms are individually used to select the optimal features for

each of the databases. Next, an RDF classifier is trained using the optimal features selected using

various feature selection algorithms.

The performance of the feature selection algorithms is compared in terms of foreground and

background segmentation accuracies and is shown in Table 4.6. Of all the feature selection algo-

rithms compared in Table 4.6, it can be observed that the proposed modified RELIEF algorithm

provides a good trade-off between the overall segmentation accuracy and foreground segmenta-

tion accuracy. Further analysis into the optimal features selected by different algorithms reveal

that saliency features are assigned significantly high weight in modified RELIEF. In all other al-

gorithms, either saliency does not occur in the list of optimal features or is assigned lower weight.

The advantage of the modified RELIEF feature selection algorithm is that it works better in binary

classification setting with continuous features. Hence, it can be deduced that modified RELIEF

algorithm is the most suitable feature selection algorithm.

4.4.6 Comparison with Existing Latent Print Segmentation Algorithm

The proposed segmentation algorithm is compared with existing segmentation algorithm proposed

by Zhang et al. [7]. In order to compare the results and follow the experimental protocol discussed

in Section 4.2, we obtained the binary masks for all the images in NIST SD-27 database from

the authors of [7] and split it according to three cross validation sets. Figure 4-10 shows the

comparison of the two algorithms in terms of segmentation accuracy on the NIST SD-27 dataset.
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Figure 4-10: Comparing the performance of the proposed segmentation algorithm with the algo-
rithm recently proposed by Zhang et al. [7], on the NIST SD-27 dataset.

As compared to Zhang et al. [7], the proposed algorithm gives similar background segmentation

accuracy but it yields an improvement of about 18% in the overall segmentation accuracy due to

high foreground accuracy.

4.4.7 Matching Performance

The final objective of segmenting latent fingerprints from the background is to improve the match-

ing performance. Therefore, the performance of the proposed segmentation algorithm is also eval-

uated in terms of fingerprint matching accuracy after segmentation on both the latent fingerprint

databases2. For the NIST SD-27 database, manually annotated minutiae (available along with the

database) are used while minutiae for the IIITD-CLF database are automatically extracted using

VeriFinger SDK. For segmented images, only the subset minutiae lying within the segmented mask

are considered for matching.

2The proposed algorithm is compared with the manual ground truth of segmentation.
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Matching latent fingerprints is a challenging research problem and there is no standard open

source latent fingerprint matching SDK or commercial system freely (or low cost) available in

public domain. It is observed from the literature that local MCC [142, 143] description for the

minutiae provides state-of-the-art results [85] on latent print matching. Therefore, latent fingerprint

matching results are shown using the MCC descriptors. For both the databases, images of 2000

subjects from the NIST SD-4 database [122] are appended to extend the gallery and three times

random split based cross validation is performed. The performance is reported in terms of the

rank-50 identification accuracy and the results are reported in Table 4.7 and Figures 4-11 and 4-12.

Some key results obtained are as follows:

∙ Using ground truth segmentation, on the NIST SD-27, rank-50 identification accuracy of

83% is observed, which is significantly greater than the accuracy obtained with the unseg-

mented images (56%). It can be observed that both the variants of the proposed algorithm:

using all features and using only optimal features, performs comparable to the ground truth

segmentation with almost 80% rank-50 matching accuracy. On the NIST SD-27 database,

the matching performance is not reduced much by using only the optimal set of features.

Wilcoxon’s rank-sum test between the results obtained from all the features and the optimal

features, accepts the null hypothesis at 5% significance, claiming there is not much statistical

difference between the results obtained.

∙ On the IIITD-CLF database, a similar trend can be observed, where the matching perfor-

mance of the proposed segmented images is almost as good as the ground truth segmented

images. The performance is low due to the poor feature extraction by VeriFinger, which is

fine-tuned for processing tenprints.

∙ The number of minutiae preserved by each algorithm after segmentation is provided in Ta-

ble 4.8. It can be observed that, in both the databases, the percentage of minutiae preserved

by the segmentation algorithm is proportional to its corresponding matching performance.

A higher number of minutiae is found in the IIITD-CLF database as they are automatically

extracted using a ten-print matcher, while in NIST SD-27 manually annotated minutiae are

used.
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Table 4.7: Rank-50 identification accuracy (in %) of the proposed segmentation algorithms using
MCC descriptor. Manually marked minutiae are used for NIST SD-27 while VeriFinger SDK is
used to extract minutiae from IIITD-CLF database.

Algorithm NIST SD-27 IIIT-D CLF
Unsegmented 55.9± 2.7 26.9± 2.7
Ground truth 83.1± 7.3 34.2± 3.6
All features + RDF 80.0± 6.3 33.4± 3.0
Saliency features + RDF 66.9± 6.5 26.6± 0.5
Optimal features + RDF 78.7± 6.4 29.6± 3.9

Table 4.8: Average number of minutiae extracted in the fingerprint images after segmentation.

Algorithm NIST SD-27 IIIT-D CLF
Ground truth 19.2 31.9
All features + RDF 19.2 33.3
Saliency features + RDF 15.5 31.1
Optimal features + RDF 18.7 33.3
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Figure 4-11: CMC curves showing the average matching performance of unsegmented and seg-
mented images on the NIST SD-27 database.
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Figure 4-12: CMC curves showing the average matching performance of unsegmented and seg-
mented images on the IIITD-CLF database.

4.4.8 Performance Evaluation using Latent Fingerprint Identification Sys-

tem with Very Large Gallery

We also compute the effectiveness of the proposed segmentation algorithm using a popular latent

fingerprint identification system used by law enforcement agencies3. The system has over 2 mil-

lion pre-enrolled identities in the database and is modular in nature. Experiments are performed

on the IIITD-CLF database. NIST databases are not used as they may have been used to train

the system apriori. First, the gallery images for IIITD-CLF are enrolled (after the experiments,

these enrollments are deleted from the system) and then 1280 probe images are used for evalua-

tion. Two sets of experiments are performed: (1) using the default setting of the latent fingerprint

system which uses inbuilt segmentation algorithm and (ii) when segmented outputs obtained from

the proposed algorithm are given as input for matching. Rank-50 accuracies obtained for both

the experiments are 71.4% and 72.3% respectively. This shows that the proposed segmentation

3The license agreement does not allow us to name the commercial system in any kind of comparison.
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algorithms improves the identification performance of a latent fingerprint system on a very large

gallery database.

4.5 Summary

Latent fingerprints collected as a forensic evidence are affected by background noise, limited con-

tent, and varying quality. As the first step in the recognition pipeline, latent fingerprint segmen-

tation plays an important role. In this research, we proposed a novel latent print segmentation

algorithm that extracts saliency, image, gradient, ridge, and quality features from local patches of

the image. These features determine the characteristics of both foreground ridge and background

noise. An optimal set of features are selected using modified RELIEF based feature selection

algorithm and a Random Decision Forest classifier is used to learn foreground and background

regions. Further, a n-degree polynomial representation of the segmented region is found to be the

most optimal representation of the segmented results. The performance of the proposed algorithm

is evaluated on the basis of three metrics: SIVV-TPR, segmentation accuracy (along with FSA

and BSA), and rank-𝑘 identification accuracy. The results show that the proposed segmentation

algorithm yields high segmentation performance on the NIST SD-4 inked print database and NIST

SD-27 and IIITD-CLF latent databases, showing that the algorithm is able to segment the regions

of interest from the background. Using the automatically segmented images, we have observed

improved matching performance, which further supports the effectiveness of the segmentation al-

gorithm.
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Chapter 5

Latent Fingerprint Minutiae Extraction

5.1 Introduction

The primary step for realizing a “lights-out" IAFIS system with minimum or no human interfer-

ence, is to perform automated feature (minutiae) extraction. Despite the huge amount of research

being done in latent fingerprint matching, feature extraction is still a challenge because of the

following reasons and as shown in Figure 5-1,

∙ Smudges and strokes introduced by chemical reagents or brush adds to the noise and infor-

mation loss during latent fingerprint lifting.

∙ The surface from which the latent fingerprint is lifted adds to the background noise, thereby

making detection of ridge flow challenging.

It can be observed from Figure 5-2(a) that the local region around a minutia has a different ridge

structure than a non-minutia patch. However, as shown in Figure 5-2(b), latent fingerprint minutia

patches lack a definite structure, making it challenging to learn meaningful information. Owing

to the non-uniform and uncertain variations in latent fingerprints, it has been challenging for re-

searchers to define a model for extracting minutiae. Human engineered features such as gradient

information and frequency based information, provide limited performance due to the presence of

background noise. Therefore, a feature descriptor can be learnt that could describe and differenti-

ate a minutia patch from a non-minutia patch. The key idea in this research is to learn a descriptor

for the neighbourhood of a minutiae, ie., the difference in the structure of patches having and not
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Figure 5-1: Sample latent fingerprints from NIST SD-27 database [4] showing spurious minutiae
extracted by (a) NBIS and (b) VeriFinger 6.0 SDK

(a) High quality fingerprint image patches

Minutia
patches

Non-minutia
patches

(b) Latent fingerprint image patches

Minutia
patches

Non-minutia
patches

Figure 5-2: (a) High quality fingerprint patches illustrating the difference in the ridge structure
between minutia and non-minutia patches, (b) Local patches from latent fingerprints illustrating
the lack of well defined structures and noisy ridge patterns.

having a minutiae. Adopting from the literature of Unsupervised Feature Learning, deep learn-

ing algorithms have been used to learn complex feature representations of the input data [172].
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The popular formulations of deep learning algorithms such as an autoencoder or a RBM can be

used to learn latent fingerprint patch descriptor in an unsupervised fashion. However, it is well

known in the machine learning community that supervised feature extraction usually leads to bet-

ter classification [173]. For instance, incorporating Fisher criterion for determining projections

in subspace methods reduces the intra-class variability and increases the inter-class variability,

thereby increasing discrimination capabilities. Motivated by this observation, in this research, we

proposed supervised regularization for autoencoder and RBM called GSAE and Class Sparsity

Specific Restricted Boltzmann Machine (cssRBM). The primary contributions of this research are

as follows:

∙ Propose a supervised ℓ2,1-norm regularization method for autoencoder called GSAE and

derive a solution using majorization-minimization approach [174],

∙ Propose a cssRBM, which makes use of class information to introduce within-group spar-

sity using ℓ2,1-norm regularization. Construct deep networks, cssDBM and cssDBN using

cssRBM,

∙ A novel fingerprint patch descriptor learning algorithm using GSAE, cssDBM and cssDBN,

individually,

∙ A binary classification model using 2𝜈-SVM for detecting minutiae in latent fingerprint,

using the learnt patch descriptor, and

∙ Perform extensive testing and analysis of the proposed minutiae extractor on two public

latent fingerprint databases, namely NIST SD-27 [4] and MOLF [175].

5.2 Regularization in Deep Learning Algorithms

Deep learning architectures consist of multiple hidden layers with non-linear activation functions

which enables them to learn a complex relationship between the input and the output. However,

the deep architecture also implies the presence of a large number of hyperparameters to be opti-

mized. At times, these parameters are strictly optimized for the training data distribution, thereby
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restricting the usability for unseen test data which leads to a familiar problem of overfitting. Reg-

ularization is a common technique to address overfitting by introducing an additional term in the

objective function that better guides the learning process. With increase in the number of parame-

ters to learn and with increased complexity of the objective functions in deep learning architecture,

there is a constant requirement of more efficient regularization methods to improve the learning

capacity.

The overfitting resolution techniques employed on network-based-architectures aim at achiev-

ing one or both of these goals (i) avoid peaking of weights by adding penalty or normalizing the

weights and (ii) introducing sparsity to the learned weights to avoid learning “noisy" patterns [176].

Generally, the additional regularization terms added to the loss function helps in achieving these

objectives. Table 5.1 and Figure 5-3 gives an overview of the different kinds of regularization

adopted in network based deep learning literature. These techniques can be broadly grouped as

follows:

Early Stopping

To perform early stopping, a validation data set of known class labels is required apart from the

train set and test set. The process of training is stopped when the error on the validation set starts

increasing, while the train error may still be decreasing. This denotes the point where the classifier

begins to overfit for the train data. Although the notion of early stopping is promising, stopping

criteria is still indefinite. Lutz et al. [177] discussed 14 different criteria to avoid overfitting in

network based architectures such as high generalization loss, increase in the validation error in

consecutive iterations, and ratio of average training error to minimum training error over an itera-

tion.

ℓ2-norm, Rectifiers, Max-norm and Maxout Regularization

These are the most common methods adopted to avoid overfitting. In ℓ2 regularization [178],

squared magnitude of all the parameters, 1
2
𝜆𝑤2, is added as a penalty to the optimization function.

Here, 𝜆 is the regularization parameter that controls the amount of penalty to be applied on each

parameter. The ℓ2 regularizer (also called as ℓ2-norm weight decay) heavily penalizes peaked

weight values maintaining the balance in the parameters. In max-norm regularization [179], the

incoming weight vector on every hidden unit is constrained such that ||𝑤2|| < 𝑐. Here, 𝑐 is a
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Table 5.1: A comparison of different types of regularization methods used in the literature for
network based architectures

Technique Regularization Working
ℓ2 norm [178] 1

2
𝜆𝑤2 Clips peak weights

Rectifiers [180] 𝑙𝑛(1 + 𝑒𝑦) Non-saturating activation function
Max-norm [179] ||𝑤2|| < 𝑐 Clips peak weights
ℓ1 norm [178] 𝜆|𝑤| Sparse weight matrix
KL-divergence [182]

∑︀ℎ
𝑗=1𝐾𝐿(𝑦𝑗||𝑦) Average activation of hidden node is sparse

SGRBM [183] ℓ1/ℓ2 Group level sparsity at hidden unit level
Dropout [179] 𝑧𝑖 = 𝑤𝑖(𝑟

(𝑙) * 𝑦) + 𝑏𝑖 Random sparse nodes at every level
Dropconnect [184] 𝑧𝑖 = (𝑤𝑖 * 𝑟(𝑙))𝑦 + 𝑏𝑖 Random sparse weights between levels

tunable hyperparameter that can be adjusted based on the learning data. This regularization method

projects w on a circle of radius 𝑐 whenever it goes beyond that, making sure that the norm of

any weight vector does not go beyond 𝑐. Rectifiers [180] apply a non-linear function, such as

smooth softmax function, to the output of hidden units to avoid saturation of output. Maxout

networks [181] avoids activation saturation by taking only the maximum of all activations while

ignoring the remaining.

Sparsity based Regularization

In ℓ1-norm [178] regularization, a term 𝜆||𝑤||1 is added to the optimization function to make sure

that the learnt weight vector is sparse. KL-divergence based sparsity [182] limits the average

activations of hidden units while minimizing the divergence between the produced and expected

output. Other recent sparsity introduction methods are dropout [179] and dropconnect [184] net-

works. These are stochastic regularization techniques, generally used to prevent overfitting. In

dropout networks, a certain percentage (𝑝 × 100) of randomly selected visible and hidden nodes

are dropped by making their activation zero. To compensate for the thinned networks obtained dur-

ing training, while fine-tuning the weights of the entire network are increased by a factor of 1/𝑝.

Dropconnect is a generalized version of dropout, where instead of removing the node, connections

between the nodes are randomly removed.

Adding Training Noise

In case of limited variety in training data, the deep learning architectures might just function as
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Figure 5-3: An overview of different kinds of regularization techniques used in the literature for
an network based deep architecture. Note that the number of nodes in each hidden later is varying
and may be dense or sparse depending on the application, data characteristics, and architecture.

a linear identity function, highly overfitting for the training data. Adding noise to the training

data and training denoising architectures improves the generalization capability of deep learning

algorithms. Vincent et al. [185] proposed denoising autoencoder that attempts to reconstruct the

original image from a noisy image using stacked denoising autoencoder algorithm.

Hybrid Regularization

Generally, one or many of these regularizers are used together, thereby complementing their prop-

erties to achieve better learning; for example ℓ2+ℓ1-norm towards the end of training, Dropout+ℓ2−

𝑛𝑜𝑟𝑚, Dropout+max-norm. Further, group techniques such as group lasso (ℓ1/ℓ2 regularization)

have also been explored in literature [183]. While ℓ1/ℓ2 regularization [183] succeeds in introduc-

ing sparsity at group (class) level, it is important to introduce sparsity within a class as well.
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5.3 GSAE: Group Sparse AutoEncoders

Autoencoders are generally unsupervised in nature and leverage the availability of large unlabelled

data for feature representation. However, if large amount of labelled data is available, the standard

formulation of autoencoder needs to be updated to incorporate the labelled information. Sang et

al. [186] recently proposed a supervised loss function in which they optimize the squared loss and

the classification loss, simultaneously. Gao et al. [187] proposed a supervised deep autoencoder

for face recognition by reducing the loss between a probe image and its corresponding gallery

image. In this research, we propose a novel approach for modeling stacked sparse autoencoder

that preserves group sparsity. The learning is performed such that the features of a single class will

have the same sparsity signature. In other words, the non-zero values in the features occur at the

same positions for a class. This is achieved by incorporating ℓ2,1-norm regularization [188], [189],

[190].

The description of the proposed algorithm starts with the explanation of an autoencoder. Let

𝑋 be the input data, where

𝑋 =

⎡⎣{𝑥1,1 . . . 𝑥1,𝑛1}⏟  ⏞  
𝑋1=class 1

, . . . , {𝑥𝐶,1 . . . 𝑥𝐶,𝑛𝑐}⏟  ⏞  
𝑋𝐶=class C

⎤⎦ (5.1)

Here, 𝐶 is the number of classes, {𝑛1, 𝑛2, . . . , 𝑛𝐶} are the number of data points in each of the 𝐶

classes, and the data is organized such that all the data columns belonging to class 1 appear first,

followed by data columns of class 2, and so on till data columns of class 𝐶. To learn a single layer

generative autoencoder model, the loss function 𝐽 is defined as:

𝐽(𝑊 ) = argmin
𝑊,𝑈

[︀
||𝑋 − 𝑈𝜑(𝑊𝑋)||22 + 𝜆𝑅(𝑊 )

]︀
(5.2)

where, 𝜑 is a non-linear activation function such as sigmoid function, 𝑊 and 𝑈 are the encoding

and decoding weights, respectively. Higher order representation can be learnt by stacking multiple

layers together and training them in a greedy layer wise fashion. 𝑅(𝑊 ) can be any regularization

function, controlled by the parameter 𝜆, to avoid overfitting by introducing some additional con-

straints while learning the weight matrix. Some popular regularization functions are (i) LASSO or
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the ℓ1-norm enforces sparse learning of weights, (ii) Euclidean or the ℓ2-norm adds higher penalty

to the peak weights, thereby enforcing diffused learning of weights, and (iii) Elastic net or (ℓ1+ℓ2)-

norm adds both the norms in the optimization function. In the proposed group-sparse autoencoder

framework, we introduce a ℓ2,1-norm based regularization as follows:

𝐽(𝑊 ) = argmin
𝑊,𝑈

[||𝑋 − 𝑈𝜑(𝑊𝑋)||22 + 𝜆

𝐶∑︁
𝑐=1

||𝑊𝑋𝑐||2,1] (5.3)

where, || ∙ ||2,1 =
∑︀

𝑗 ||𝑍𝑗→||2 is the sum of ℓ2-norms of the rows (indicated by 𝑗). The inner

ℓ2-norm promotes a dense (non-zero) solution within the selected rows, however the outer ℓ1-norm

(sum) enforces sparsity in selecting the rows. In this proposed formulation, the regularizer en-

forces group sparsity within each class by adding the constraint that the features from the same

group/class should have the similar sparsity signature. Note that, 𝜑(∙) is only a clipping function

applied term-by-term. Therefore, the second term of ℓ2,1-norm can be applied to both 𝜑(𝑊𝑋)

or just 𝑊𝑋 as both promote row-sparsity. This makes the optimization supervised as the infor-

mation regarding the class labels is utilized during training. However, we are not enforcing any

discriminative property to the features as we are not enforcing features from different groups to

have different sparsity signatures.

5.3.1 Solution using Majorization-Minimization

The objective function in Equation 5.3 is a non-convex optimization problem that can be solved

using alternating minimization. At any 𝑘𝑡ℎ iteration, the solution for the non-convex problem can

be split into two steps as follows:

Step 1 : 𝑈 = argmin
𝑈

||𝑋 − 𝑈𝜑(𝑊(𝑘−1)𝑋)||22

Step 2 : 𝑊 = argmin
𝑊

[︃
‖ 𝑋 − 𝑈(𝑘)𝜑(𝑊𝑋) ‖22 +𝜆

𝐶∑︁
𝑐=1

||𝑊𝑋𝑐||2,1

]︃ (5.4)

Step 1 is a linear least squares regression problem having a closed form solution. Step 2 is

challenging, hence, we adopt the Majorization-Minimization [174] algorithm to solve it. In this

approach, let 𝐽(𝑊 ) be the function to be minimized. For the initial point 𝑤0, a smooth function

𝐺0(𝑊 ) is constructed through 𝑤0 which has a higher value than 𝐽(𝑊 ) for all values of 𝑤 apart

110



from 𝑤0, at which the values are the same. This is the Majorization step where a smooth function

𝐺0(𝑊 ) is constructed which is easy to minimize. Iteratively at each step, 𝐺𝑘(𝑊 ) is minimized to

obtain the next iteration 𝑥𝑘+1. It can be understood that the solution at every iteration gets closer

to the actual solution. For mathematical convenience, Step 2 can be rewritten as,

𝑎𝑟𝑔min
𝑍

[︃
‖ 𝑋 − 𝑈(𝑘)𝜑(𝑍) ‖22 +𝜆

𝐶∑︁
𝑐=1

||𝑍𝑐||2,1

]︃
(5.5)

where, 𝑍𝑐 = 𝑊𝑋𝑐 and 𝑍 is obtained by stacking the 𝑍𝑐’s in column. In this optimization problem,

only the least square regression term has to be majorized and the penalty term is not affected.

During the minimization step, the surrogate majorizer function, 𝐺𝑘(𝑍) of the actual loss function

𝐽(𝑊 ) is chosen as follows,

𝐺𝑘(𝑍) =‖ 𝑋 − 𝑈(𝑘)𝜑(𝑍) ‖22 +𝜆
𝐶∑︁
𝑐=1

||𝑍𝑐||2,1

+ (𝜑(𝑍)− 𝜑(𝑍)(𝑘))
𝑇 (𝑎𝐼 − 𝑈𝑇

(𝑘)𝑈(𝑘))(𝜑(𝑍)− 𝜑(𝑍)(𝑘))

(5.6)

Here, 𝑎 is the maximum eigenvalue of the matrix 𝑈𝑇
(𝑘)𝑈(𝑘) and 𝐼 is the identity matrix. By simpli-

fying 𝐺𝑘(𝑍), we obtain,

𝐺𝑘(𝑍) = 𝑋𝑇𝑋 − 2𝑋𝑇𝑈(𝑘)𝜑(𝑍) + 𝜑(𝑍)𝑇𝑈𝑇
(𝑘)𝑈(𝑘)𝜑(𝑍)

+ (𝜑(𝑍)− 𝜑(𝑍)(𝑘))
𝑇 (𝑎𝐼 − 𝑈𝑇

(𝑘)𝑈(𝑘))(𝜑(𝑍)− 𝜑(𝑍)(𝑘))

+ 𝜆

𝐶∑︁
𝑐=1

||𝑍𝑐||2,1

(5.7)

=⇒ 𝐺𝑘(𝑍) = 𝑋𝑇𝑋 + 𝜑(𝑍)𝑇(𝑘)(𝑎𝐼 − 𝑈𝑇
(𝑘)𝑈(𝑘))𝜑(𝑍)

− 2
[︀
𝑋𝑇𝑈(𝑘) + 𝜑(𝑍)𝑇(𝑘)(𝑎𝐼 − 𝑈𝑇

(𝑘)𝑈(𝑘))
]︀
𝜑(𝑍)

+ 𝑎𝜑(𝑍)𝑇𝜑(𝑍) + 𝜆
𝐶∑︁
𝑐=1

||𝑍𝑐||2,1

(5.8)
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Let 𝐵 = 𝜑(𝑍)𝑇(𝑘) +
1
𝑎
𝑈𝑇
(𝑘)(𝑋

𝑇 − 𝑈(𝑘)𝜑(𝑍)
𝑇
(𝑘)), Equation 5.8 can be written as

𝐺𝑘(𝑍) = 𝑎(−2𝐵𝑇𝜑(𝑍) + 𝜑(𝑍)𝑇𝜑(𝑍)) + 𝜆
𝐶∑︁
𝑐=1

||𝑍𝑐||2,1 + ℰ (5.9)

where, ℰ consists of constant terms. Using the identity, ‖ 𝐵 − 𝜑(𝑍) ‖22= 𝐵𝑇𝐵 − 2𝐵𝑇𝜑(𝑍) +

𝜑(𝑍)𝑇𝜑(𝑍), Equation 5.9 can be rewritten as

𝐺𝑘(𝑍) = 𝑎

(︃
‖ 𝐵 − 𝜑(𝑍) ‖22 +

𝜆

𝑎

𝐶∑︁
𝑐=1

||𝑍𝑐||2,1

)︃
− 𝑎𝐵𝑇𝐵 + ℰ (5.10)

Removing the constant terms and re-writing in terms of 𝑊 , the optimization function can be writ-

ten as,

argmin
𝑊

(︃
‖ 𝐵𝑇 − 𝜑(𝑊𝑋)𝑇 ‖22 +

𝜆

𝑎

𝐶∑︁
𝑐=1

||(𝑊𝑋𝑐)
𝑇 ||2,1

)︃
(5.11)

All the matrices are written in terms of transpose, as the activation function is computed element-

wise. Blumensath [191] has shown that it is possible to replace the above non-linear problem, into

a simple linear problem using one step of gradient descent, as follows:

argmin
𝑊

(︃
‖ 𝑃 −𝑊 𝑇 ‖22 +

𝜆

𝑎

𝐶∑︁
𝑐=1

||𝑋𝑇
𝑐 𝑊

𝑇 ||2,1

)︃
(5.12)

where, 𝑃 = 𝑊 𝑇
(𝑘)−𝜎∇ ‖ 𝐵𝑇 −𝜑(𝑊𝑋)𝑇 ‖22

⃒⃒⃒⃒
𝑊(𝑘)

, 𝜎 is the step size for gradient descent and can be

found using Lipschitz bound. Summation can be removed by redefining Equation 5.12 as follows,

argmin
𝑊

(︂
‖ 𝑃 −𝑊 𝑇 ‖22 +

𝜆

𝑎
||𝑉𝑊 𝑇 ||2,1

)︂
(5.13)

where, 𝑉 is defined as the block row concatenation of𝑋𝑇
𝑐 ’s. Taking the derivative of Equation 5.13

and setting it to zero, we obtain,

2𝑃 − 2𝑊 𝑇 +
𝜆

𝑎
𝑉 𝑇𝐷𝑉𝑊 𝑇 = 0 (5.14)
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where, 𝐷 = 𝑑𝑖𝑎𝑔(|𝑉𝑊 𝑇 |−1) (︂
𝐼 +

𝜆

2𝑎
𝑉 𝑇𝐷𝑉

)︂
𝑊 𝑇 = 𝑃 (5.15)

Using matrix inversion lemma,

(︂
𝐼 +

𝜆

2𝑎
𝑉 𝑇𝐷𝑉

)︂−1

= 𝐼 − 𝑉 𝑇

(︂
2𝑎

𝜆
𝐷−1 + 𝑉 𝑇𝑉

)︂−1

𝑉

=⇒ 𝑊 𝑇 = 𝑃 − 𝑉 𝑇

(︂
2𝑎

𝜆
𝐷−1 + 𝑉 𝑇𝑉

)︂−1

𝑉 𝑃

(5.16)

If 𝑇 =
(︀
2𝑎
𝜆
𝐷−1 + 𝑉 𝑇𝑉

)︀−1
𝑉 𝑃 , then Equation 5.16 becomes 𝑊 𝑇 = 𝑃 − 𝑉 𝑇𝑇 . The solution

for 𝑇 is as follows, (︂
2𝑎

𝜆
𝐷−1 + 𝑉 𝑇𝑉

)︂
𝑊 𝑇 = 𝑉 𝑃

=⇒ 𝑇 =

(︂
2𝑎

𝜆
𝐷−1 + 𝐶𝐼

)︂−1 (︀
𝑐𝑇(𝑘−1) + 𝑉 (𝑃 − 𝑉 𝑇𝑇(𝑘−1))

)︀ (5.17)

is obtained by adding 𝑐𝑇 on both sides of equation and subtracting with 𝑉 𝑇𝑉𝑊 𝑇 . 𝑐 is the maxi-

mum eigenvalue of 𝑉 𝑇𝑉 . The complete algorithm is summarized as follows:

Initialize: W, V

For every iteration:

Step 1 : 𝑈(𝑘) = argmin𝑈 ‖ 𝑋 − 𝑈𝜑(𝑊𝑋) ‖22
Step 2 : 𝐵 = 𝜑(𝑍)𝑇(𝑘) +

1
𝑎
𝑃 𝑇 (𝑋𝑇 − 𝑈(𝑘)𝜑(𝑍)

𝑇
(𝑘))

Step 3 : 𝑃 = 𝑊 𝑇
(𝑘) − 𝜎∇ ‖ 𝐵𝑇 − 𝜑(𝑊𝑋)𝑇 ‖22

⃒⃒⃒⃒
𝑊(𝑘)

Step 4 : 𝑇 =
(︀
2𝑎
𝜆
𝐷−1 + 𝐶𝐼

)︀−1 (︀
𝑐𝑇(𝑘−1) + 𝑉 (𝑃 − 𝑉 𝑇𝑇(𝑘−1))

)︀
Step 5 : 𝑊 = 𝑃 𝑇 − 𝑇 𝑇𝑉

Another approach for solving the non-convex optimization problem is Alternating Direction Method

of Multipliers [192]. However, this approach introduces a lot of hyper-parameters, that require fine-

tuning. It can be understood that the proposed approach utilizes only the regularization constant 𝜆

as the parameter. The remaining parameters such as 𝑎, 𝑐, and 𝜎 can be computed and fixed.
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5.4 Class Sparsity based Restricted Boltzmann Machine

The proposed cssRBM is an extension of the generative model of the RBM which incorporates both

unlabeled and labeled data. Given a set of training data containing both unlabeled and labeled data

points, the cssRBM simultaneously learns two objectives as part of its optimization: (a) optimally

reconstruct the input data to minimize reconstruction error and (b) learn discriminative features for

each class while maintaining sparsity. While objective (a) is achieved primarily using the unlabeled

data points, objective (b) is achieved using the labeled data points [193]. These cssRBM units

are then combined with dropout and dropconnect regularization techniques to achieve robustness

against overfitting and the extracted features are utilized with a 2𝜈-SVM classifier to obtain the

final class label. In this section, we briefly discuss the details of RBM followed by presenting the

formulation of the proposed cssRBM.

5.4.1 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machines are undirected models that use stochastic hidden units to model

the distribution over the stochastic visible units [194]. The hidden layer is symmetrically connected

with the visible unit and the architecture is “restricted" as there are no connections between units

of the same layer. Traditionally, RBM is used to model the distribution of the input data 𝑝(v);

however, it can be used to model the joint distribution between the input data and the target classes,

𝑝(𝑦, v). Let the hidden layer h = (ℎ1, ℎ2, . . . , ℎ𝑛) consist of 𝑛 nodes and the visible layer be v =

(𝑣1, 𝑣2, . . . , 𝑣𝑑), where 𝑑 is the dimensionality of input data. Since the number of hidden nodes are

fixed in this architecture, RBM becomes a parametric model. Let 𝐷 = {(𝑥𝑖, 𝑦𝑖)} be the training

data where 𝑥𝑖 represents a data point belonging to class 𝑦𝑖 ∈ {1, 2, . . . , 𝐶}. As presented by

Larochelle and Bengio [195], the distribution modeled by RBM can be represented as

𝑝(𝑦, v,h) = 𝑒−𝐸(𝑦,v,h) (5.18)

𝐸(𝑦, v,h) = −h𝑇Wv − h𝑇Uy − b𝑇v − c𝑇h − d𝑇y (5.19)

where, 𝜃 = {W,U,b, c,d} are the parameters of the model and y = (1𝑦=𝑖)
𝐶
𝑖=1. To obtain the

114



least energy model, it is necessary to update the weight matrices W and U in such a way that the

hidden layer models the joint distribution between the input variables and the target classes. The

conditional distributions of v, 𝑦, and h are given as follows,

𝑝(v|h) =
𝑑∏︁
𝑖=1

𝑝(𝑣𝑖|h) (5.20)

𝑝(𝑦|h) = 𝑒𝑑𝑦+
∑︀ℎ

𝑗=1 𝑈𝑗𝑦ℎ𝑗∑︀
𝑦* 𝑒

𝑑𝑦*+
∑︀ℎ

𝑗=1 𝑈𝑗𝑦*ℎ𝑗
(5.21)

𝑝(h|𝑦, v) =
𝑛∏︁
𝑖=1

𝑝(ℎ𝑖|v) (5.22)

where, the conditional distribution on 𝑦 is modeled using a softmax function and the conditional

distribution on h depends on both 𝑦 and v. Assuming binary input variable, the probability that a

node will be active can be given as follows,

𝑝(𝑣𝑖 = 1|h) = 𝑠𝑖𝑔𝑚

(︃
𝑏𝑖 +

𝑛∑︁
𝑗=1

𝑊𝑗𝑖ℎ𝑗

)︃
(5.23)

𝑝(ℎ𝑗 = 1|𝑦, v) = 𝑠𝑖𝑔𝑚

(︃
𝑐𝑗 + 𝑈𝑗𝑦 +

𝑑∑︁
𝑖=1

𝑊𝑗𝑖𝑣𝑖

)︃
(5.24)

Although the conditional distributions are shown for binary valued input variables, a similar

model can be easily generated for categorical and continuous valued input variables as well. The

objective function for training an RBM is to minimize the negative log-likelihood over the entire

training data [196] given as

ℒ(𝒟, 𝜃) = −
|𝐷|∑︁
𝑖=1

𝑙𝑜𝑔𝑝(𝑦𝑖, 𝑣𝑖) (5.25)

Computing the exact gradient of this loss function is almost intractable. However, there is a

stochastic approximation to approximate the gradient, popularly known as the contrastive diver-

gence gradient. A sequence of Gibbs sampling based reconstruction produces an approximation

of the expectation of joint energy distribution, using which the gradient can be computed.
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5.4.2 Class Sparsity Signature in RBM

Consider an RBM learning a joint distribution function as 𝑝(𝑦,v,h), where 𝑦 is the set of classes, v

and h are the set of visible and hidden nodes, respectively. For all the training instances belonging

to a specific class 𝑦𝑖, let ℋ𝑖 be the set of hidden nodes being activated. ℋ𝑖 is a matrix where the

𝑗𝑡ℎ row corresponds to the binary hidden layer representation of the 𝑗𝑡ℎ training sample belonging

to class 𝑖. The ℓ2,1-norm regularization is defined as

∑︁
𝑖∈𝑦

||ℋ𝑖||2,1 =
∑︁
𝑖∈𝑦

⎡⎢⎣ |𝐷𝑖|∑︁
𝑗=1

⎛⎝ |ℎ|∑︁
𝑘=1

h2
𝑖𝑗𝑘

⎞⎠ 1
2

⎤⎥⎦ (5.26)

where, 𝑖 = 1, 2, . . . ,𝑚, 𝑗 = 1, 2, . . . , |𝐷𝑖| iterates over the training samples belonging to class 𝑖,

and 𝑘 = 1, 2, . . . , |ℎ|, where |ℎ| is the total number of nodes in the hidden layer. h𝑖𝑗𝑘 = 𝑝(ℎ𝑘 =

1|𝑦𝑖, 𝑥(𝑗)) denotes the probability of the hidden node ℎ𝑘 being activated when provided with an

input sample 𝑥(𝑗) belonging to class 𝑦𝑖. As the matrix is row-sparse, the outer ℓ1-norm promotes

sparse selection of rows (specific data points) while the inner ℓ2-norm chooses important (peak)

features within each data point. ℓ2,1 has been extensively used in signal processing community to

explore joint and class based sparsity [189].

Let ℒ be the loss function of the RBM that is to be optimized. The overall regularized objective

function can be written as,

argmin
𝜃
{ℒ+ 𝜆

∑︁
𝑖∈𝑦

||ℋ𝑖||2,1} (5.27)

where, 𝜃 = {𝑊,𝑈, 𝑏1, 𝑏2, 𝑏3} is the set of weights and biases for the RBM. This cost function is

not smooth throughout, it has discontinuities and therefore cannot be solved using straightforward

gradient descent. We can only solve an approximation of the actual objective function which is

differentiable. Hence, we modify the overall function using Iterative Reweighted Least Squares

(IRLS) technique. IRLS is a technique to find the maximum likelihood estimate of a generalized

linear regression problem. IRLS is effective in solving the least square regression problem by

mitigating the effect of outliers in the data. It is an iterative approach which solves a weighted

least square regression at each step, thereby iteratively updating the parameters of the regression

model. The non-differentiable ℓ2,1 norm is approximated using a weighted ℓ2 norm which can be

116



easily trained using the standard contrastive divergence algorithm. Thus, the regularization factor

can be reformulated as:

||ℋ𝑖||2,1 = ||𝑐𝑖ℋ𝑖||2 (5.28)

where, 𝑐𝑖 is the set of weights associated with each class. Cotter et al. [197] proposed a simple

and effective technique for calculating the value of 𝑐 for the problem of joint sparse multiple

measurement vector recovery as follows,

𝑐𝑖 = 𝑑𝑖𝑎𝑔
(︁
||ℋ(𝑗)

𝑖 ||
1
2
2

)︁
(5.29)

where, 𝑑𝑖𝑎𝑔(𝑥) is a function that returns a diagonal matrix with elements of vector 𝑥 in the leading

diagonal. In Equation 5.29, we are taking the row-wise ℓ2 norm of 𝐻 matrix to create a vector

followed by creating the diagonal matrix from them. Rewriting Equation 5.27 using weighted ℓ2

norm formulation, we get,

argmin
𝜃
{ℒ+ 𝜆

∑︁
𝑖∈𝑦

||𝑐𝑖ℋ𝑖||2} (5.30)

Algorithm 1 Training update for cssRBM

Data: Training data 𝐷 as pairs (𝑥𝑖, 𝑦𝑖), learning rate 𝜆
Initialize: Initialize 𝑊,𝑈, 𝑏1, 𝑏2, 𝑏3, and 𝑐𝑖
◁ perform N iterations
for n : 1 −→ N do

solve: argmin𝜃{ℒ+ 𝜆
∑︀

𝑖∈𝑦 ||𝑐𝑖ℋ𝑖||2}
◁ repeat until convergence

end for
Update: 𝑐𝑖

The resulting function is smooth and differentiable at all points in the space, ensuring optimiza-

tion using contrastive divergence algorithm. A succinct representation of the proposed algorithm

is shown in Algorithm 1. Each step in the algorithm has a closed form solution. However, the

weights are dependent on the variable itself and hence keep changing after every iteration. Thus,

the solution needs to be updated till some convergence is reached.

The IRLS approach is simple but slow, one needs to solve the full cost function iteratively
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when the weights are updated. The sub-gradient based approach and proximity operators can

also be used to solve the proposed optimization problem directly (as is done in signal processing

literature); but such an approach would require deriving the algorithm from scratch - one could not

use the time tested contrastive divergence technique. Moreover, to the best of our knowledge, the

proximity operators do not function optimally with generative models such as the RBM.

5.4.3 Constructing Deep Networks using cssRBMs

As mentioned previously, a single RBM does not have sufficient modeling capacity for complex

tasks. In order to progressively learn more complex functions of the input, a deep network archi-

tecture can be constructed using cssRBM units as well. In this section, we present the construction

of cssDBN and cssDBM via the proposed cssRBM.

Constructing cssDBM

Deep Boltzmann Machine (DBM) [198] is an extension of RBM by stacking multiple hidden layers

on top of each other. DBM is an undirected learning model and thus it is different from the other

stacked network architectures in which each layer receives feedback from both the top-down and

bottom-up layer signals. This feedback mechanism helps in managing the uncertainty in learning

models. While the traditional RBM can model logistic units, a Gaussian-Bernoulli RBM can be

also used with real valued visible units [199]. A two hidden layer Gaussian-Bernoulli DBM can

be modeled as follows:

𝑃 (𝑦,v,h1,h2; 𝜃) =
1

𝑍(𝜃)
𝑒(−𝐸(𝑦,v,h1,h2;𝜃)) (5.31)

𝐸(𝑦,v,h1,h2; 𝜃) = −
𝑁𝑣∑︁
𝑖=1

𝑁ℎ1∑︁
𝑗=1

𝑤1
𝑖𝑗

𝑣𝑖
𝜎𝑖
ℎ1𝑗 −

𝑁ℎ1∑︁
𝑗=1

𝑁ℎ2∑︁
𝑙=1

𝑤2
𝑗𝑙ℎ

1
𝑗ℎ

2
𝑙 −

𝑁ℎ2∑︁
𝑙=1

𝐶∑︁
𝑚=1

𝑤3
𝑙𝑚ℎ

2
𝑙 𝑦𝑚

−
𝑁𝑣∑︁
𝑖=1

(𝑣𝑖 − 𝑏𝑖)
2

2𝜎2
−

𝑁ℎ1∑︁
𝑗=1

𝑎1𝑗ℎ
1
𝑗 −

𝑁ℎ2∑︁
𝑙=1

𝑎2𝑙 ℎ
2
𝑙 −

𝐶∑︁
𝑚=1

𝑎3𝑚𝑦𝑚

(5.32)

Here, v ∈ R𝑁𝑣 denotes the real-valued visible vector, 𝑁𝑣, 𝑁ℎ1 , 𝑁ℎ2 are the number of units in the
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visible and hidden layers respectively, and 𝜃 = {W1,W2,W3,b, a1, a2, a3, 𝜎} is the set of model

parameters, representing visible-to-hidden and hidden-to-hidden symmetric connection weights,

bias terms, and the Gaussian distribution standard deviation. Biases are equivalent to the weights

of a connection with a static value of one and 𝑍(𝜃) is the normalizing constant. The conditional

distribution of the visible and hidden layers are given as:

𝑃 (𝑣𝑖 = 1|h1; 𝜃) = 𝒩 (𝑣𝑖|𝜇, 𝜎2) (5.33)

𝑃 (ℎ1𝑗 = 1|v,h2; 𝜃) = 𝑠𝑖𝑔𝑚

⎛⎝ 𝑁𝑣∑︁
𝑖=1

𝑣𝑖
𝜎2
𝑤1
𝑖𝑗 +

𝑁ℎ2∑︁
𝑘=1

ℎ2𝑘𝑤
2
𝑗𝑘 +

𝐶∑︁
𝑚=1

𝑦𝑤3
𝑗𝑚 + 𝑎1𝑗

⎞⎠ (5.34)

where, 𝜇 =
∑︀𝑁ℎ1

𝑗=1 ℎ
1
𝑗𝑤

1
𝑖𝑗 + 𝑏𝑖 is the mean of the visible layer. 𝒩 (·|𝜇, 𝜎2) is the probability density

function of a normal distribution with mean 𝜇 and standard deviation 𝜎. If only W1 is considered

and the other weights are set to zero, the derivative of the log-likelihood with respect to the model

parameters is:

𝛿𝑙𝑜𝑔𝑃 (v; 𝜃)

𝛿W1
= E𝑃𝑑𝑎𝑡𝑎

[vh1𝑇 ]− E𝑃𝑚𝑜𝑑𝑒𝑙
[vh1𝑇 ] (5.35)

Here, E𝑃𝑑𝑎𝑡𝑎
[·] denotes the expectation with respect to the data distribution and E𝑃𝑚𝑜𝑑𝑒𝑙

[·] is the

expectation with respect to the distribution defined by the DBM as in Equation 5.31. Similar

derivatives are obtained for W2 with the product vh1 replaced by h1h2 and also for W3.

Constructing cssDBM

A Deep Belief Network (DBN) [182] is a generative network consisting of a stack of RBMs,

where the hidden layer of each RBM acts as the visible layer for the next RBM in the stack. A

DBN is trained one RBM at a time, in a greedy manner since training all the layers simultaneously

is highly computationally expensive. Contrastive divergence learning can be applied to greedily

learn individual cssRBM since the cost function is differentiable. In the cssDBN, the hidden layer

in the first cssRBM acts as the visible layer for the second cssRBM and so on. A two layer DBN
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formulation can be defined as:

𝑃 (𝑦,v,h1,h2; 𝜃) = 𝑃 (𝑦,h2,h1)𝑃 (v|h1) (5.36)

where, v is the set of visible nodes, and h1 and h2 are the two hidden layers. Let Wvh1 and Wh1h2

denote the weights between the visible layer and the first hidden layer, and the weights between the

first and the hidden layer, respectively. The joint distribution of the top two layers and conditional

distribution of the visible layer are given as

𝑃 (𝑦,h2,h1; 𝜃) =
1

𝑍(𝜃)
𝑒−𝐸(𝑦,h2,h1;𝜃) (5.37)

where,

𝐸(𝑦,h2,h1; 𝜃) = h1𝑇Wh1h2h2 + h2𝑇Wh2y𝑦 + a1𝑇h1 + a2𝑇h2 + a3𝑇𝑦 (5.38)

𝑃 (v|h1) =
𝑁𝑣∏︁
𝑖=1

𝑃 (𝑣𝑖 = 1|h1) = 𝑠𝑖𝑔𝑚

⎛⎝𝑏𝑖 + 𝑁ℎ1∑︁
𝑗=1

𝑤𝑖𝑗ℎ
1
𝑗

⎞⎠ (5.39)

Here, 𝜃 denotes the cssDBN parameters, 𝑏𝑖 is the bias associated with the hidden unit ℎ𝑖, 𝑣𝑗 is the

𝑗𝑡ℎ unit in the visible layer, and 𝑤𝑖𝑗 is the weight of the connection between ℎ𝑖 and 𝑣𝑗 (Wvh1).

In both cssDBM and cssDBN models, ℓ2,1-norm regularization is applied in a greedy layer wise

approach where each layer is trained as an cssRBM, as explained in Equation 5.27. Further, the

overall fine-tuning is performed using the regularization constraint as well.

5.4.4 cssDBM and cssDBN with Dropout and Dropconnect

The idea behind class sparsity signature constraint is to make sure that the sparse hidden representa-

tion for a class is similar. This regularization method can be also complemented with other popular

regularization methods as shown in Table 5.1. Two successful methods, dropout and dropconnect,

are discussed in this section. In this research, we also formulate how dropout and dropconnect can

be integrated with cssDBM and cssDBN.

Dropout is a technique where randomly selected subset of activations are set to zero with
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each layer. Dropconnect generalizes this idea by randomly setting a subset of weights within the

network to zero. Consider a Bernoulli random variable, 𝑟, which takes a value of 1 with probability

𝑝. In dropout, a vector of binary mask is formed for each hidden layer, such that the hidden node

ℎ𝑖 is retained if 𝑟𝑖 = 1. Thus for dropout, the conditional distribution can be reformulated as

𝑝(ℎ𝑖 = 1|𝑟𝑖,v) = 1 .(𝑟𝑖 = 1) * 1

1 + 𝑒𝑥𝑝(−𝑏𝑖 −
∑︀

𝑗 𝑣𝑗𝑤𝑖𝑗)
(5.40)

For dropconnect, a matrix of binary mask is formed to mask the weights between every two

consecutive layers, such that the weight 𝑤𝑖𝑗 is retained if 𝑟𝑖𝑗 = 1. For dropconnect, the conditional

distribution should be reformulated as

𝑝(ℎ𝑖 = 1|𝑟𝑖𝑗,v) =
1

1 + 𝑒𝑥𝑝(−𝑏𝑖 −
∑︀

𝑗 𝑣𝑗(1 .(𝑟𝑖𝑗 = 1) * 𝑤𝑖𝑗))
(5.41)

With the updated probability distribution for the hidden layers in Equations 5.40 and 5.41, the en-

ergy function for cssDBM (Equation 5.31) and cssDBN (Equation 5.36) gets updated accordingly.

Thus, class sparse signature constraint can be complemented with dropconnect or dropout regular-

ization in both DBM and DBN. Particularly, during the fine-tuning stage, ℓ2,1-norm regularization

with dropout or dropconnect enforces the supervised feature learning of the model.

5.5 Latent Fingerprint Minutia Extraction

The main idea is to use the proposed regularization for the unsupervised deep learning algorithm

so as to better discriminate between the minutia and non-minutia patches from latent fingerprints.

Though minutia extraction from inked and live-scan fingerprints are well addressed problems [9],

extracting minutia from latent fingerprint images is still an open research problem [140]. Due

to the challenging nature of the problem, not many algorithms exist for automated latent finger-

print minutiae extraction. In some of the earlier research, existing tenprint matchers are utilized to

extract minutia information from latent fingerprints [200], [85], [137]. However, with poor perfor-

mance of these algorithms, researchers have realized the need for latent specific minutia extractor

which is able to handle poor quality information in a more robust way. Paulino et al. [85], [65]

proposed a MCC [142] based descriptor for manually annotated minutia features. It can be ob-
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Figure 5-4: Block diagram to explain the various stages in the proposed algorithm. I: Pre-training
stage where the group sparse deep autoencoder is learnt from labelled high quality fingerprints,
II: Fine-tuning stage where the feature learner and classifier are trained with labelled latent finger-
prints, and III: Testing stage in which local patches from unknown latent fingerprint are classified
as minutia and non-minutia patches.

served from Figure 5-2(a) that the local region around a minutia has a different ridge structure than

a non-minutia patch. However, as shown in Figure 5-2(b), latent fingerprint minutia patches lack

a definite structure, making it challenging to learn meaningful information. Owing to the non-

uniform and uncertain variations in latent fingerprints, it has been challenging for researchers to

define a model for extracting minutiae. Human engineered features such as gradient information

and frequency based information, provide limited performance due to the presence of background

noise. In our initial study [107], we proposed the first automated algorithm for latent fingerprint

minutiae extraction using SDSAE [201] to learn latent fingerprint local patch description. In this

research, we design an automated minutiae extraction algorithm for latent fingerprint using GSAE,

cssDBM, and cssDBN. Figure 5-4 illustrates the three main stages of the formulation for latent fin-

gerprint minutiae detection and are discussed as follows:

122



1. Learning feature descriptor: Minutiae patches and non-minutiae patches are extracted

separately from tenprint fingerprint images. The aim is to learn seperately a minutiae patch

descriptor and a non-minutiae patch descriptor from these local patches.

2. Training binary classifier: Minutiae extraction in latent prints is presented as a binary

classification problem - whether the given latent patch is a minutia patch or a non-minutia

patch. Labeled latent print patches (both minutia and non-minutia) are represented using the

descriptors learnt in the previous step. A 2𝜈-SVM based binary supervised classifier is then

learnt to classify between the minutiae and non-minutiae patches.

3. Detecting minutiae patch: Whenever an unseen latent print patch is provided, the minutiae

and non-minutiae descriptor of the patch are extracted and classified using the trained 2𝜈-

SVM classifier. Minutia extraction in the entire latent print is performed by classifying every

local block as a minutiae or non-minutiae patch.

We have used 2𝜈-SVM [202] with radial basis function kernel for classification. 2𝜈-SVM is a

“cost-sensitive" version of SVM that penalizes the training errors of one class more than the other

by assigning class specific weights to both the classes. This explicit penalty minimizes the false

negatives while restricting the false positives below a certain significance level. Hence, in case

of imbalanced class data or in case of different cost of error, different importance can be given to

the two types of errors, making sure that the majority class is not creating a bias. Further, in case

of 𝑐-class classification problems, 𝑐 different binary classifiers are created using the “one-vs-all"

approach to train binary 2𝜈-SVM. The primal form of 2𝜈-SVM optimization function [202] is

given as

min
𝑤,𝑏,𝜓,𝜌

1

2
||𝑤||2 − 𝜈𝜌+

𝛾

𝑛

∑︁
𝑖∈𝐼+

𝜓𝑖 +
1− 𝛾

𝑛

∑︁
𝑖∈𝐼−

𝜓𝑖 (5.42)

such that, (i) 𝑦𝑖(𝑘(𝑤, 𝑥𝑖) + 𝑏) ≥ 𝜌 − 𝜓𝑖, (ii) 𝜓𝑖 ≥ 0, and (iii) 𝜌 ≥ 0. Here, 𝑤 is the decision

boundary, 𝑥 are the support vectors, 𝑦 are the corresponding class labels, 𝑘(𝑤, 𝑥𝑖) is the kernel

function, 𝜓𝑖 are the slack variables, 𝛾 ∈ {0, 1} is a parameter controlling the trade-off between

false positives and false negatives, and 𝑖 = {1, 2, . . . , 𝑛} for 𝑛 support vectors.

After classifying a patch as minutiae patch, the center of the patch is assumed to be the location

of minutiae. The gradient of the ridge information is computed for the patch of size 𝑤 × 𝑤 with
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respect to the center pixel (𝑖, 𝑗), as follows:

𝒱𝑥(𝑖, 𝑗) =
𝑖+𝑤

2∑︁
𝑢=𝑖−𝑤

2

𝑗+𝑤
2∑︁

𝑣=𝑗−𝑤
2

2𝛿𝑥(𝑢, 𝑣)𝛿𝑦(𝑢, 𝑣) (5.43)

𝒱𝑦(𝑖, 𝑗) =
𝑖+𝑤

2∑︁
𝑢=𝑖−𝑤

2

𝑗+𝑤
2∑︁

𝑣=𝑗−𝑤
2

(︀
𝛿2𝑥(𝑢, 𝑣)𝛿

2
𝑦(𝑢, 𝑣)

)︀
(5.44)

𝜃(𝑖, 𝑗) =
1

2
𝑡𝑎𝑛−1

(︂
𝒱𝑥(𝑖, 𝑗)
𝒱𝑦(𝑖, 𝑗)

)︂
(5.45)

Minutiae matching algorithms, such as bozorth3 (NBIS from NIST), use a bounding box ap-

proach to match minutiae ie., the distance between the matching pair of minutiae should be less

than a threshold1. As the match happens with a bounding box (default 32x32), if the location

predicted minutiae is anywhere within the bounding box limits of the actual minutiae, then it is

still counted as a match. This aspect of a matching algorithm is leveraged to predict the minutiae

patch. We further observe that predicting the precise location of the minutiae may be skipped

without much loss in accuracy. Similarly, while pairing with the full fingeprints, the bounding box

approach chooses only one latent minutiae from a neighborhood region. Hence, in our case it is

not imperative to address with the overlapping patches during minutiae extraction.

5.6 Experimental Protocol and Performance Analysis

5.6.1 Fingerprint Datasets

The unsupervised deep learning algorithms require a large database for learning a robust feature

representation. Since the collection of latent fingerprints is a time consuming and challenging

task, there are only a few latent fingerprint datasets available in the public domain. Therefore, we

first prepare the heterogenous fingerprint database by combining four publicly available live-scan

fingerprint databases and use it as the pre-training data set. The four databases are: CASIA-

FingerprintV5 [131], NIST SD-14 v2 [124], FingerPass [203], and MCYT [132]. The description

1 Refer: https://github.com/lessandro/nbis/blob/master/bozorth3/src/lib/
bozorth3/bozorth3.c
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Table 5.2: Summary of the composition and characteristics of the heterogenous fingerprint
database. This database is used as the pre-training dataset for the proposed deep learning approach.

Database Capture type #Images #Minutiae
CASIA-FingerprintV5 [131] Optical 20, 000 515, 641
NIST SD-14 v2 [124] Card print 54, 000 8, 188, 221
FingerPass [203] Optical, capacitive 34, 560 812, 643
MCYT [132] Optical, capacitive 24, 000 571, 713
Total 132,560 10,088,218

Table 5.3: Summary of latent fingerprint databases used in our experiments, including the number
of train patches and test patches used in each of the three cross validation experiments.

Database #Images #Train Patches #Test Patches

NIST SD-27 [4]

258 9757 65, 274
Fold 1 5, 503 65, 274
Fold 2 5, 439 65, 274
Fold 3 5, 441 65, 274

MOLF [175] 4, 400 - 422, 400

and properties of these datasets are summarized in Table 5.2. To make the feature learning su-

pervised, minutiae are extracted from all the fingerprints using an open source minutia extractor

mindtct of the NBIS [5]. An image patch of size 64 × 64 (𝑤 = 64) is extracted with minutia at

the center, thereby creating 10, 088, 218 number of minutia patches extracted from all the images.

From every fingerprint, same number of non-minutia patches and minutia patches are extracted

to ensure same number of samples from both the classes. The proposed algorithm is trained with

raw image intensities of these image patches (vector size 1 × 4096) as input. For evaluation, the

following two publicly available latent fingerprint databases are selected. A summary of the latent

fingerprint datasets is shown in Table 5.3 and explained below:

∙ NIST SD-27 dataset [4]: The database has 258 latent fingerprints, pre-classified as good,

bad, and ugly, based on their biometric quality along with minutiae points, manually anno-

tated by forensic experts. Since the minutia patches of high quality latent fingerprints (as a

part of heterogenous database) are different from field quality latent fingerprints, 50% ran-

domly chosen images from the NIST SD-27 database are used to fine-tune the deep learning
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model learnt using the heterogenous fingerprints. The remaining 50% images (129 latent fin-

gerprints) are used for testing the classification performance. For fine-tuning the proposed

deep learning model and learning the classification model, same number of minutia and non-

minutia patches of size 64× 64 are extracted from each training image. Three times random

cross validation is performed to remove any training bias.

∙ MOLF dataset [175]: It consists of 4, 400 latent fingerprints from 100 different subjects (all

10 fingers). All the latent fingerprints are lifted using black powder from a tile background.

The manually annotated minutiae are also available along with this database. Since the pre-

defined protocol of MOLF does not provide any training subset, we have used the entire

MOLF dataset as test set and the best trained model obtained from the NIST SD-27 database

is used for performance evaluation. It contains 422, 000 test samples.

5.6.2 Evaluation Metrics

The primary objective of this algorithm in fingerprints recognition is correctly extracting minutiae

from latent fingerprint images. Therefore, the performance metric used in all these experiments is

Correct Classification Accuracy (CCA %), which denotes the ratio of correctly classified patches

with the total number of patches. The overall accuracy is further split into class-specific classi-

fication accuracy: Minutiae Detection Accuracy (MDA) and Non-Minutiae Detection Accuracy

(NMDA). In terms of MDA and NMDA, although both the accuracies should be high, it is impor-

tant to detect all the minutia patches accurately along with minimizing the occurrence of spurious

minutia patches.

MDA =
No. of correctly classified minutia patches

Total no. of minutia patches
× 100 (5.46)

NMDA =
No. of correctly classified non-minutia patches

Total no. of non-minutia patches
× 100 (5.47)

5.6.3 Latent Fingerprint Minutiae Extraction Performance

The experimental performance of GSAE on benchmark image datasets such as MNIST, CIFAR-

10, and SVHN are discussed in the appendix (See Appendix A). The performance of the proposed
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Table 5.4: Classification results of the proposed and existing algorithms on the NIST SD-27 latent
fingerprint dataset. The results are reported in terms of CCA (%). MDA is the Minutia Detection
Accuracy and NMDA is the Non-Minutia Detection Accuracy.

Algorithm Classifier CCA MDA NMDA
VeriFinger VeriFinger 90.33 20.41 96.80
Sankaran et. al. [107] Softmax 46.80 65.18 41.21
KLD 2𝜈-SVM 99.31 91.90 100

GSAE 2𝜈-SVM 99.53 94.48 100
KLD + GSAE 2𝜈-SVM 99.61 95.37 100
cssDBN 2𝜈-SVM 99.67 96.16 100
cssDBM 2𝜈-SVM 99.68 96.21 100

approach is evaluated on two different datasets, NIST SD-27 and MOLF, under four different ex-

perimental scenarios: (i) using VeriFinger, which is a popular commercial tool for fingerprints,

(ii) using the proposed architecture with only KL-Divergence (KLD), (iii) using the proposed ar-

chitecture with only GSAE, and (iv) using the proposed architecture with KLD + GSAE. We also

compared the results with current state-of-the-art algorithm proposed by Sankaran et al. [107].

The results on NIST SD-27 and MOLF are summarized in Table 5.4 and Table 5.5 respectively.

Table 5.5: Classification results of the proposed and existing algorithms on the MOLF latent fin-
gerprint dataset. The results are reported in terms of correct classification accuracy (%), minutia
detection accuracy, and non-minutia detection accuracy.

Algorithm Classifier CCA MDA NMDA
VeriFinger VeriFinger 78.52 21.33 92.92
KLD 2𝜈-SVM 59.25 84.17 52.97

GSAE 2𝜈-SVM 90.14 90.44 90.07
KLD + GSAE 2𝜈-SVM 90.74 90.63 90.37
cssDBN 2𝜈-SVM 92.16 92.37 92.11
cssDBM 2𝜈-SVM 92.19 92.45 92.12

As shown in Table 5.4, on the NIST SD-27 database, the correct patch classification accuracy

of the proposed algorithm is as high as 99% when using KLD + GSAE. The standard deviation of

cross-validation experiments is in the range of ±0.1, denoting very little training bias. However,

the MDA of VeriFinger is around 20% showing that it rejects a lot of genuine minutia patches. The
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(a) (b)

Figure 5-5: Sample example latent fingerprints from NIST SD-27 database showing correct re-
sults of the proposed algorithm. Red dots denote manually annotated minutiae and green patches
represent the minutia patches predicted using the GSAE algorithm.

architecture of Sankaran et al. [107] yield the MDA of 65%. In comparison to that, the proposed

algorithms using GSAE, cssDBN, and cssDBM yields an improvement of more than 30%.

While detecting non-minutia patches, we observed that the algorithm of Sankaran et al. [107]

yields the lowest accuracy of 41.21% followed by VeriFinger which yields 96.80%. This shows

that VeriFinger can efficiently detect the background patches. The proposed algorithms yield 100%

NMDA on the same experimental protocol. Such a high accuracy can be attributed to 2𝜈-SVM

classification, which supports in making the false positive error almost zero. As shown in Figure

5-5 and Figure 5-6, on the NIST SD-27 database, the minutia detection accuracy is very high and

very small number of spurious minutia patches are extracted.

The second database used for performance evaluation is the MOLF database. This is a very

large database, however, there is no defined training database. Therefore, the results on the MOLF

database are obtained by training the model on the NIST SD-27 dataset and testing the best learned

model with the MOLF database. Since Sankaran et al. yields lower accuracies on the NIST SD-27

database, on the MOLF database, we have only compared with VeriFinger, KLD and GSAE. As

shown in Table 5.5, the proposed architecture yields classification accuracies of over 90% with

standard deviation in the range of ±0.15. Comparing with different regularizations reveals that

KLD + GSAE provides the best results on both the datasets and the performance of GSAE is better
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(a) (b)

Figure 5-6: Sample latent fingerprints from NIST SD-27 database showing some incorrect predic-
tions obtained using the proposed algorithm. Red dots represent the annotated minutiae, green
patches represent the correct minutiae patches predicted using the GSAE algorithm and blue
patches show the incorrect ones (false positive). It can be observed that no genuine minutiae is
rejected by the proposed algorithm.

than the popular KLD regularization. On 3349 images out of the total 4400 images present in

the MOLF database, VeriFinger failed to extract any minutia. This shows that VeriFinger yields

poor results in extracting genuine minutiae whereas using only KLD regularization extracts lots of

spurious minutiae - the non-minutiae detection accuracy is only 52.97%.

The results on both the database show that the performance of the proposed minutiae extraction

algorithm is better than the existing algorithms. It is our assertion that the performance of the

proposed algorithm on the MOLF database is not as good as on the NIST SD-27 because, (i) the

number of testing data points on the MOLF database is very large compared to the NIST SD-27

dataset and (ii) there are significant variations in the characteristics of the two databases. Using

the model trained with NIST SD-27 also contributes to lower accuracies on the MOLF database.

Further, for a latent fingerprint image of size 800× 768, typically 600 patches has to be classi-

fied. A Matlab 2014 implementation on a 2.66 GHz dual-core processor with 16GB RAM extracts

all the minutiae from a single image in around 627 milliseconds. Therefore, the proposed approach

is suitable for real-time system as well.
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Figure 5-7: Recognition performance on the MOLF dataset using a latent fingerprint identification
system. The in-built minutiae extractor is compared against the proposed minutiae extraction
algorithms including GSAE, cssDBM, and cssDBN, while the matching algorithm is kept constant.

5.7 Latent Fingerprint Recognition Performance

We further evaluate the efficacy of the proposed GSAE based minutiae extraction approach using

a popular latent fingerprint identification system2. The identification system is modular in nature

which provides the flexibility of keeping the entire pipeline constant while changing only one

component. This facilitates evaluating the performance of the proposed approach with minutiae

extracted from other approaches as well. The system has over 2 million pre-enrolled identities

in the database that can be used as the large gallery in the experiments. Since the NIST SD-

27 database may have been used to train the system, we have performed matching experiments

only with the MOLF database. Gallery images from the MOLF database are enrolled3 and probe

2The license agreement does not allow us to name the commercial system in any kind of comparison.
3After the experiments, these enrollments are deleted from the system.
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images are used for testing. From a probe fingerprint image, first the minutiae points are extracted

using the proposed algorithm by first finding the minutiae patches and then taking its center as

the minutia point. The minutiae template/feature is given to latent fingerprint matching system

which matches against the large gallery (which also includes gallery from the MOLF). We also

compare the performance with the in-built approach of latent fingerprint system in which minutiae

are extracted by the system itself and matched against the gallery. We obtain rank-50 accuracies

pertaining to both these experiments. For the proposed approach, rank-50 accuracy is 69.83%

whereas for the inbuilt feature extraction approach in latent fingerprint system yields 69.21%, as

shown in Figure 5-7. Though this seems slight improvement by the proposed algorithm, this is

still noteworthy because of the large scale matching (using more than 2 million gallery identities)

with over 4,000 probe latent fingerprint images. This experiment demonstrates that the proposed

algorithm is highly promising for automatic latent fingerprint feature extraction.

The performance of cssDBM and cssDBN for latent fingerprint minutiae extraction are ex-

perimentally studied with the same datasets and protocols adopted from evaluated GSAE. The

latent fingerprint identification system provided a rank-50 identification accuracy of 71.95% using

the minutiae extracted from cssDBN and 71.97% using the minutiae extracted from cssDBM. In

comparison, minutiae extracted from GSAE provided a rank-50 identification accuracy of 69.83%

while the inbuilt minutiae extraction of the identification system provided an accuracy of 69.21%.

This demonstrates the efficacy of the proposed minutiae extraction algorithms.

5.8 Summary

This research presents a novel supervised regularization method for autoenocders using ℓ2,1-norm

which utilizes class labels to learn supervised features for the specific task at hand. The opti-

mization function is solved using a majorization-minimization approach and applied in two dif-

ferent unsupervised feature learning algorithms. ℓ2,1 regularized stacked autoencoder is called as

group sparse autoencoder (GSAE) and regularized RBM is called as class sparsity specific re-

stricted Boltzmann machines (cssRBM). Further using the representation learning approach, an

automatic latent fingerprint minutia extraction algorithm is formulated as a binary classification

algorithm. The minutiae extraction algorithm is evaluated on two publicly available latent finger-
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print databases, NIST SD-27 and MOLF. The results show that the proposed algorithm improves

the performance of automated latent fingerprint feature extraction. It is our assertion that the ef-

fectiveness of GSAE, cssDBN, and cssDBM can be further utilized to improve the classification

performance with challenging and noisy databases.
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Chapter 6

Smartphone Fingerphoto Recognition

In today’s world, smartphones and handheld devices are omnipresent and they are identified as

one of the fastest spreading technologies [32]. With such a penetrating growth, smartphones have

become an inevitable part of our day-to-day life, holding all our personal data in one place. With

increasing capabilities and power of mobile phones, it’s use in e-commerce applications such as

mobile banking is also increasing. Hence, access control to these devices should be secure, flexi-

ble, and easy-to-use. Traditionally, the access control mechanisms adopted in smartphones include

pins, passwords, and patterns. These lock-screen authentication mechanisms are popularly used

and well explored in existing smartphones. However, these mechanisms are prone to attacks in-

cluding over-the-shoulder copy attack. Therefore, it is important to search for another authentica-

tion mechanism that is accurate and less prone to presentation or copy attack. In the realm of bio-

metrics, other modalities such as fingerprint, face, and iris have been explored [33], [34], [35] along

with biometric gesture based mechanisms in touch screen smartphones [36], [37], [38]. One such

example is BioID facial recognition application (https://mobile.bioid.com/), which is

a multifactor user authentication application using face biometrics. From a usability point of view,

fingerprints have been found to be more adoptable and easier than pin based access control mech-

anism [39].

There are two broad approaches on how finger impression can be used for providing access

control to smartphones: (i) fingerprint based authentication, and (ii) fingerphoto based authentica-

tion. Fingerprint recognition is performed with the use of specially designed fingerprint sensors.

An embedded sensor (external or attached within the display unit) is used to capture the fingerprint,
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and minutia based approaches are used for matching. Some of the existing smartphones have inte-

grated fingerprint sensors for authentication [33]. However, adding a capacitive or resistive sensor

to a smartphone further adds to the cost of the device. Fingerphoto1 based authentication utilizes

the in-built camera to capture a photo of the finger which can then be used for authentication. With

improvements in technology, every smartphone has a good resolution rear-camera that is exten-

sively being used. Using smartphone camera for fingerphoto capture can provide a cost effective

method for user authentication.

This research focuses on designing efficient algorithm for automatic fingerphoto recognition.

Inspired by the application of scattering network based features for other biometric modalities

such as face [204] and iris [205], in our preliminary research [145] we proposed a deep ScatNet

based matching pipeline for smartphone based fingerphoto images. We created IIITD Smartphone

FingerPhoto Database-v1 (ISPFD-v1)2, focusing on background and environmental illumination

variations as two challenges for fingerphoto matching. An end-to-end matching pipeline was con-

structed with background segmentation, ridge structure enhancement, feature representation, and

classifier based verification as the four modules of the pipeline. This research is an extension of

the preliminary work with the following key contributions:

∙ a novel combination of saliency based and skin color based fingerphoto region of interest

segmentation algorithm and removing the highly varying noisy background. The preliminary

version of the algorithm [145] used only a skin color based segmentation.

∙ propose a novel application of Scattering Network (ScatNet) based feature representation [206]

and matching algorithm for fingerphoto images,

∙ study the effect of camera resolution and the environemntal variation in the captured image

on the authentication performance of fingerphoto images, using Scattering Network (Scat-

Net) based feature representation [206] and matching algorithm for smartphone captured

fingerphoto images,

∙ creating and releasing public IIITD SmartPhone Fingerphoto Database v2 (ISPFD-v2)3 con-
1Fingerphoto images are hand finger ridge impressions captured directly using a camera in a touchless method.

Fingerprint images are ridge impressions captured using a touch based live-scan sensor.
2Available at http://iab-rubric.org/resources/spfd.html
3Available at http://iab-rubric.org/resources/spfd2.html
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sisting of more than 16, 000 images obtained from 300 unique fingers. The fingerphoto im-

ages are taken using two smartphones: OnePlus One (OPO) and MicroMax Canvas Knight.

The preliminary version of the research [145] used IIITD SmartPhone Fingerphoto Database

v1 (ISPFD-v1) having 5, 100 images obtained from 128 unique fingers using only one smart-

phone.

∙ extensive experimental analysis on the proposed dataset studying the effect of segmentation,

enhancement approaches. Further, we study the individual impact of (i) noisy background,

(ii) environmental illumination, and (iii) camera resolution on the performance of finger-

photo authentication.

Training image pairs
Offline process

Online process

Segmentation
+

Enhancement

Probe image

Preprocessing

Deep Scattering 
Network

Feature extraction

Random 
Decision Forest

Classifier training

Gallery image

Match/ 
Non-match

Preprocessing
Feature extraction

Matching

Figure 6-1: Illustrating the different steps involved in the proposed fingerphoto verification
pipeline.
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6.1 Proposed Fingerphoto Matching Algorithm

The proposed fingerphoto matching pipeline consists of four major steps: (i) fingerphoto segmen-

tation, (ii) ridge pattern enhancement, (iii) ScatNet based feature representation, and (iv) matching.

The individual steps are illustrated in Fig. 6-1 and explained in the sections below.

6.1.1 Fingerphoto Segmentation

A fingerphoto image, as discussed, can be captured under varying environmental conditions. For

matching, it is essential to accurately segment the region of interest, i.e., the foreground region

from the background objects in the image. The process of segmentation involves finding a binary

mask in a captured fingerphoto image, that represents the distal phalanges of the finger. Even

though a captured image can contain many background objects, it is safe to assume that, during

capture, the finger is the closest object to the smartphone camera. Under this assumption, we ob-

serve two distinguishing features that separate the fingerphoto from the rest of the background:

(i) the skin color of the finger region, and (ii) the salient nature [207] of the finger region in the

image. As observed in Fig. 6-2, individually, skin color features could lead to both false positive

and false negative while the salient region generally provides more false positive results in seg-

mentation around the finger. Further analyzing the results of individual algorithms on different

fingerphoto images, we observe that combining these two segmentation methods provide less erro-

neous results in segmenting the foreground finger region. Thus, the proposed algorithm combines

the existing region covariance based saliency [208] along with skin color measurements for effec-

tive fingerphoto segmentation. The steps involved in the proposed segmentation algorithm are as

follows:

Step 1: For every pixel, seven basic visual features (represented further as 𝑑-dimensional) are

extracted: (i) intensity of the pixel in 𝐿 * 𝑎 * 𝑏 color space4, (ii) the edge orientation of the pixel

along 𝑥 and 𝑦 directions, and (iii) 𝑥 and 𝑦 location of the pixel.

Step 2: For a region 𝑅𝑖 in an image, a 7 × 7 covariance matrix 𝐶𝑖 is constructed using the 7-

dimensional feature vector. The first order statistics of 𝐶𝑖 are computed and the extracted statistics
4http://in.mathworks.com/help/images/examples/color-based-segmentation-using-the-l-a-b-color-space.html
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Input image Skin color based 
segmentation

Saliency based 
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Figure 6-2: Example images showing the segmentation results of using only skin color based
features or only saliency based features.

Original image

Saliency based 
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segmented mask

Fused segmented 
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Segmented image

Figure 6-3: Illustration of the segmentation of algorithm combining the saliency based and skin
color based segmentation maps.

137



are non-linearly aggregated, as follows,

𝜓(𝐶𝑖) = (𝜇, 𝑠1, . . . , 𝑠𝑑, 𝑠𝑑+1, . . . , 𝑠2𝑑)
𝑇 (6.1)

where, 𝜇 and 𝑠 are the first order statistics mean and standard deviation, respectively. The size of

the region, 𝑅𝑖 is chosen based on the resolution of the image. In our research, we found a window

of size 16× 16 to be ideal.

Step 3: The dissimilarity between any two regions,𝐷(𝑅𝑖, 𝑅𝑗) is computed as a normalized dif-

ference between their feature representation obtained using their covariance matrices, 𝜓(𝐶𝑖), 𝜓(𝐶𝑗)

as follows,

𝐷(𝑅𝑖, 𝑅𝑗) =
||𝜓(𝐶𝑖)− 𝜓(𝐶𝑗)||
1 + ||𝑥𝑖 − 𝑥𝑗||

(6.2)

where, 𝑥𝑖 and 𝑥𝑗 denote the pixel location of the center of the image regions 𝑅𝑖 and 𝑅𝑗 , respec-

tively.

Step 4: The covariance based saliency map [208] of any region, 𝑚𝑎𝑝𝑠𝑎𝑙(𝑅𝑖), is computed by a

non-linear aggregation of the dissimilarities of the current region 𝑅𝑖 with the surrounding 𝑚 most

similar regions of the image, as follows,

𝑚𝑎𝑝𝑠𝑎𝑙(𝑅𝑖) =
1

𝑚

𝑚∑︁
𝑗=1

𝐷(𝑅𝑖, 𝑅𝑗) (6.3)

Step 5: To compute the skin color based segmentation, the entire Red Green Blue (RGB) im-

age is converted into Cyan Magenta Yellow Key (black) (CMYK) color space. The normalized

magenta channel image is used as the skin color based saliency map, 𝑚𝑎𝑝𝑠𝑘𝑖𝑛, as magenta color

channel retains most of the skin color.

Step 6: The overall segmentation map is obtained by combining the saliency based map and

the skin color based map using a weight sum fusion. The segmentation map 𝑚𝑎𝑝𝑠𝑒𝑔 is obtained
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by,

𝑚𝑎𝑝𝑠𝑒𝑔 = 𝑤1 ×𝑚𝑎𝑝𝑠𝑎𝑙 + 𝑤2 ×𝑚𝑎𝑝𝑠𝑘𝑖𝑛 (6.4)

where, 𝑤1 and 𝑤2 represent the weights associated to the normalized saliency map and normalized

skin map, respectively.

Step 7: Otsu’s thresholding method [209] is applied on the obtained map, 𝑚𝑎𝑝𝑠𝑒𝑔, to obtain

the binary segmented image of the fingerphoto.

Fig. 6-3 shows a visual illustration of the fusion of skin color based segmentation and saliency

based segmentation maps to obtain the final segmented result.

6.1.2 Fingerphoto Enhancement

The aim of enhancement is to improve the image quality so that the finger ridge patterns can be

efficiently extracted from the captured fingerphoto. The primary challenge for ridge extraction

is the noise induced by the surrounding illumination variation which affects the contrast between

the ridge and valley patterns. To remove the noise and enhance the ridge information, the seg-

mented image obtained from the previous step is first converted to gray scale. To remove speckle

noise introduced during capture, median filtering is applied on the segmented image. Further, his-

togram equalization is performed to address the illumination variation and the resulting image is

sharpened to improve the contrast between ridge and valley structures and reduce the blur. In the

resultant image, the ridge information constitutes the high-frequency components and valley and

noise components constitute the low-frequency information. To enhance the difference between

the ridge and valley information, sharpening is performed by subtracting the Gaussian blurred im-

age (𝜎 = 2) from the original image itself. Fig. 6-4 shows as example of the output provided by

the enhancement algorithm.

6.1.3 ScatNet based Feature Representation

For feature extraction, researchers have explored the representation techniques, such as minutia,

that are well established for fingerprint matching. We have observed that the variations in res-

olution and clarity among different fingerprint images are significantly less compared to that of
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fingerphoto images. Therefore, it is challenging to accurately extract these features from finger-

photo images. Li et al. [40] have also shown that minutia based matching does not perform well

for fingerphoto recognition.

As discussed earlier, the challenges in fingerphoto matching include variations due to illumi-

nation, resolution, noise, translation, and rotation. With the effect of illumination and background

noise being addressed in the preprocessing stage (segmentation and enhancement), it is important

to find a feature representation that is translation and rotation invariant [210] [211]. To encode the

discriminative properties of fingerphoto images, we propose feature representation for fingerphoto

images using Scattering Networks [212] [213]. It has been shown that ScatNet based features

effectively encode texture patterns in images [206]. As shown in Fig. 6-4, the enhanced finger-

photo image has good ridge-valley texture patterns and it is our assertion that ScatNet features can

effectively represent these patterns.

Deep Scattering Network5 is wavelet filter based network that produces a representation which

is stable to local affine transformation. Let 𝑥(𝑢) be any signal in R2 (an image, in this case) and

𝜑𝐽(𝑢) = 2−2𝐽𝜑(2−𝐽𝑢) be a low-pass averaging filter and 𝑢 be the set of parameters corresponding

to the locations 𝑥 and 𝑦 in the image space. A locally affine invariant representation is obtained by

the following convolution:

𝑆0𝑥(𝑢) = 𝑥 ⋆ 𝜑𝐽(𝑢) (6.5)

This representation is translation invariant up to 2𝐽 pixels and also loses all the high frequency

information. To utilize the high frequency information as well, a high frequency wavelet bank 𝜓 is

constructed by varying the rotation 𝜃 and the scale 2𝑗 parameters. The high-frequency, quadrature

phase, complex wavelet filterbank is given as, 𝜓𝜃,𝑗(𝑢) = 2−2𝑗𝜓(2𝑗𝜃−1𝑢). The wavelet-modulus

transform for high frequency components are obtained by:

|𝑊1|𝑥 = (𝑥 ⋆ 𝜑(𝑢), |𝑥 ⋆ 𝜓𝜆1(𝑢)|) (6.6)

where, 𝜆1 corresponds to the set of first level filtering parameters (𝜃, 𝑗). These high frequency

filters provide additional information to the features obtained in Equation 6.5. Convolving the

wavelet transform coefficients with a low pass filter produces an affine invariant representation of

5MATLAB toolbox publicly available at http://www.di.ens.fr/data/software/scatnet/
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Segmented image Enhanced image using 
the proposed algorithm

Figure 6-4: A segmented fingerphoto image and its enhanced image using the proposed algorithm,
along with the output of applying a band pass filter, removing most of the high-frequency compo-
nents.
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Figure 6-5: ScatNet feature representation of the enhanced image where 𝑅1 to 𝑅209 represent the
responses obtained from a wavelet filter bank of 209 filters, which is up to a depth of two in the
scattering network.

the high frequency components, as follows

𝑆1𝑥(𝑢, 𝜆1) = |𝑥 ⋆ 𝜓𝜆1(𝑢)| ⋆ 𝜑𝐽(𝑢) (6.7)

These coefficients are called the first-order scattering network coefficients and represent the

concatenation of all the filter responses in the wavelet bank 𝜓𝜆1(𝑢). If four different frequency

bands are chosen in 𝜆1, the overall response 𝑆1 is the concatenation of wavelet responses of all four

filters. Higher-order scattering network coefficients can be obtained by recursively constructing

deeper wavelet filter banks as follows:
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|𝑊2||𝑥 ⋆ 𝜓𝜆1(𝑢)| = (|𝑥 ⋆ 𝜓𝜆1(𝑢)| ⋆ 𝜑, ||𝑥 ⋆ 𝜓𝜆1(𝑢)| ⋆ 𝜓𝜆1|) (6.8)

These higher order ScatNet coefficients provide a more stable translation and rotation invariant

representation for the fingerphoto images, as shown in Fig. 6-5. Also, as these filters are pre-

designed, calculating a ScatNet representation is convolving these filters over the image and there

is no learning involved. Thus, it is easy to extract ScatNet features using only the computation

power of smartphones. The effective representation for a fingerphoto is the concatenation of all

𝑛-order responses such as {𝑆0, 𝑆1, . . . , 𝑆𝑛}.

In this research, we experimentally observe an optimal depth of the scattering network, 𝑛 =

2 i.e., computing the second order ScatNet coefficients for all the fingerphoto images. Let the

enhanced fingerphoto image, 𝐼𝑒𝑛ℎ be of size 𝑤 × ℎ. The concatenation of all responses upto the

second order, {𝑆0, 𝑆1, 𝑆2} contains a total of 209 filters, with each response of dimension 𝑤
8
× ℎ

8
.

Thus, the overall ScatNet feature representation of the enhanced image is 209× 𝑤
8
× ℎ

8
.

6.1.4 Feature Matching

Let 𝑃 and 𝐺 be the 1 × 𝑁 length vectorized ScatNet representations of the probe and the gallery

fingerphoto images, respectively. A supervised binary classifier 𝑔:(𝑋 → 𝑌 ) can be learned to

classify a pair of ScatNet feature representations (𝑃 , 𝐺) as a match or non-match pair. The feature

set𝑋 is the difference between the two feature representations (𝑃−𝐺) and the classification labels

𝑌 are {Match, Non-match}. From the difference of representations, the supervised classifier learns

whether an image pair is a match or a non-match pair. Two fingerphoto images that belong to the

same finger are defined as match pair, while images captured from different fingers or different

subjects are considered as non-match pairs. In this research, we use RDF [214] as the binary

classifier for verifying the pair of fingerphotos. RDF is a non-linear ensemble based classifier

consisting of multiple decision trees [215]. It employs a repetitive random sub-sampling strategy

for bagging which helps in providing robust and quicker results for correlated features. For the

total number of 𝒟 fingerphoto images in the training set, several bootstrap aggregates of size 𝑟×𝒟

are created with replacement from the data, for a ratio 𝑟 (0.5 < 𝑟 ≤ 1). A forest containing 𝑇 trees

is trained where every decision tree, 𝑡 in the forest is trained with a single bootstrap of the data
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Table 6.1: Summarizing the characteristics and the variations captured in the ISPFD-v2.

Set Challenge
Variations

Classes Images
Illumination Background Resolution

Set I
White Indoor Controlled White 13 MP 304 2400
White Outdoor Uncontrolled White 13 MP 304 2400

Set II
Natural Indoor Controlled Natural 13 MP 304 2400
Natural Outdoor Uncontrolled Natural 13 MP 304 2400

Set III
Resolution Controlled White 5 MP 304 2400
Resolution Controlled White 8 MP 304 2400
Resolution Controlled White 16 MP 304 2400

creating an ensemble of classifiers. Let 𝑀 be the length of the vectorized ScatNet representation

obtained for the fingerphoto image. At every node in the decision tree, a random feature sample, 𝑚

(typically𝑚 = 2
√
𝑀 ) is used to take the split decision based on an objective function of maximizing

information gain. Each tree, 𝑡 is designed as a binary decision tree by assigning leaf nodes as

{Match, Non-Match} corresponding to the training sample. Thus, each decision tree in the forest

classifies the input pair of fingerphoto images as a matching pair or a non-match pair. The final

decision is computed by taking a majority vote of all the decision trees in the ensemble.

6.2 IIITD SmartPhone Fingerphoto Database v2

In this research, we present ISPFD-v2 dataset consisting of more than 16, 000 images obtained

from 300 unique fingers. The fingerphoto images are taken using two smartphones: OnePlus

One (OPO)6 and MicroMax Canvas Knight7. The preliminary version of the research [145] used

ISPFD-v1 having 5, 100 images obtained from 128 unique fingers using only one smartphone.

Indoor images are captured in both constrained and uncontrolled environments, while in outdoor

conditions, images are captured without flash during daylight and with flash during night. Auto-

focus is always kept at ON status. Based on the challenges considered, the database is divided into

three subsets and the summary of all three subsets is provided in Table 6.1. The three subsets are:

∙ Set I - White Background: Fingerphoto images are captured in both indoor (controlled

6https://oneplus.net/
7http://www.micromaxinfo.com/canvasknight/
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illumination) and outdoor (with uncontrolled lighting) environment with white background,

as shown in Fig. 6-6(a) and Fig. 6-6(b). The two subsets, White Indoor (WI) and White

Outdoor (WO) show the effect of varying illumination with a constant uniform white back-

ground. The images are taken using OnePlus One phone at 13MP resolution. Each subset

has 8 images each of right index, right middle, left index, and left middle fingers of 76

subjects. This results in 76 subjects × 4 fingers × 2 lighting variations × 2 sessions × 4

instances = 4864 images for Set I.

∙ Set II - Natural Background: Fingerphoto images are captured in both indoor and outdoor

environment, allowing any natural background to be present, as shown in Fig. 6-6(c) and

Fig. 6-6(d). In real world applications, the natural background available in an indoor envi-

ronment is very different as the background objects are much closer to the fingerphoto as

compared to the outdoor background. Thus, the Natural Indoor (NI) subset shows the ef-

fect of background variation under controlled illumination while the subset Natural Outdoor

(NO), shows the effect of background and illumination variations occurring together. The

images are captured using OnePlus One phone at 13MP resolution. Similar to Set I, Set II

also has 4864 images.

∙ Set III - Resolution: This set consists of fingerphoto images captured in three different

resolutions with uniform controlled illumination and white background, as shown in Fig. 6-

6(e). Two different smartphones, OnePlus One and MicroMax Canvas Knight, are used

to capture the images at three different resolutions 5MP, 8MP, and 16MP. Flash LEDs are

turned off while the auto-focus is kept ON. All the images are captured in an indoor lab

environment, with uniform lighting and a blank white paper as the background. Under these

settings, four instances of the index finger and middle finger of the right and left hand of

76 subjects are captured at all three resolutions. This results in 76 subjects × 4 fingers × 3

resolutions × 2 sessions × 4 instances = 7296 images.

Fig. 6-6 shows sample fingerphoto images from the proposed database. The database will be

made publicly available for academic research at the following link: http://iab-rubric.

org/resources/spfd2.html.
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(a) Indoor Illumination variation with white background 

(b) Outdoor Illumination variation with white background 

(c) Indoor background variation 

(d) Outdoor background variation 

(e) Camera resolution variation 

Figure 6-6: Sample images showing various challenges addressed in ISPFD-v2. (a)-(b) illumi-
nation variation with white background, (c)-(d) background variation, and (e) camera resolution
variation. Multiple samples showing the intra-class variations and noise present in the database.
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Table 6.2: The algorithmic pipeline of the different techniques used for comparison along with
the proposed pipeline.

Type Technique Segmentation Enhancement Feature Matching
Extraction

Minutiae based
MCC

X X Minutiae using
(saliency + (median filter Cylinder VeriFinger

+ skin color) + sharpen) Code [142] SDK

NBIS
X

7 mindtct bozorth3
(nfseg)

Non-Minutiae CompCode
X X Competitive

ℓ1-distance
(Heuristics) Code [216]

ScatNet based

Minaee and 7 7
ScatNet + PCA SVM

Wang [115] (saliency + (median filter
skin color) + sharpen)

ScatNet X X
ScatNet + PCA ℓ1-distance

+ ℓ1 (saliency (median filter
skin color) + sharpen)

ScatNet X X
ScatNet + PCA

Neural
+ NN (saliency (median filter network

skin color) + sharpen)
ScatNet X X

ScatNet + PCA RDF
+ RDF (saliency (median filter

skin color) + sharpen)

6.3 Results and Analysis

The primary purpose of the experimental analysis is to evaluate the effectiveness of the proposed

algorithm for fingerphoto to fingerphoto matching. The results are demonstrated in terms of EER

and ROC curves.

6.3.1 Experimental Setting

A 50% unseen train-test protocol is followed, where half of the gallery and probe sets are used to

create match and non-match pairs for training the supervised classifiers. To avoid any training bias,

three times random cross-validation is performed by repeated random subsampling of non-match

pairs with replacement. In order to maintain consistency across different experiments, the perfor-

mance of all the algorithms is reported on the remaining 50% test set. The effect of fingerphoto
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Table 6.3: Performance comparison of different feature extraction and matching algorithms in
terms of EER (%). The preprocessing pipeline (segmentation + enhancement) is consistent across
all feature extractors.

Gallery Probe MCC Comp NBIS Minaee ScatNet ScatNet ScatNet
Code [115] + ℓ2 + NN + RDF

Exp. 1
White

White
Outdoor 16.50 19.07 50.00 23.34 16.95 3.27 3.00

Indoor
Natural
Indoor 12.36 16.22 49.87 22.04 20.39 6.50 3.21

(WI)
Natural
Outdoor 17.03 21.40 49.99 22.96 20.59 5.34 2.11

Exp. 2
Resolution 5 MP 10.35 14.32 50.00 13.65 15.72 7.53 5.23
(13 MP) 8 MP 10.01 13.03 49.98 16.21 17.93 5.42 4.74

16 MP 48.48 10.84 50.00 21.38 17.07 3.73 2.98

matching performance is studied under two experimental variations, 𝐸𝑥𝑝.1 and 𝐸𝑥𝑝.2, explained

as follows:

∙ Background-Illumination (𝐸𝑥𝑝.1): With the assumption that White Indoor (WI) images

are the most stable capture of fingerphoto images, WI subset is fixed as gallery while the

other three subsets {WO, NI, NO} are used as probe images, independently. WI-WO exper-

iment shows the performance of fingerphoto matching under the influence of illumination,

WI-NI experiment shows the matching performance in the presence of background varia-

tion, and WI-NO shows the impact of illumination and background together on the matching

performance.

∙ Resolution (𝐸𝑥𝑝.2): With fingerphoto images captured at 13MP in White Indoor (WI) envi-

ronment, as the standard resolution gallery images, we perform experiments for cross resolu-

tion matching. Three different probe sets, with resolution of captured fingerphoto images at

5MP, 8MP, and 16MP, are used. Thus, two probe sets have resolution lower than the gallery

while one probe set has fingerphoto images with a higher resolution than gallery.

Thus, for both 𝐸𝑥𝑝.1 and 𝐸𝑥𝑝.2, the same gallery images are used while the probe sets are varied

to study the impact of capture variations on the matching performance.
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6.3.2 Comparison Algorithms

For comparative analysis, neural network (NN) and normalized ℓ2 distance based matching are

used. Also, the proposed pipeline is compared with various other algorithms and matching pipelines,

as shown in Table 6.2 and explained as follows:

1. Minutiae based:

∙ MCC: Seg + Enh + Minutiae Cylinder Code (MCC) features [142] + matching using

VeriFinger SDK

∙ NBIS: nfseg based Seg + No Enh + mindtct based minutiae features + bozorth3 based

matching

2. Non-Minutiae based:

∙ CompCode: Seg + Enh + CompCode features [216] + ℓ1-distance based matching

3. ScatNet based:

∙ Minaee and Wang [115]: No Seg + No Enh + ScatNet + PCA + SVM based matching

∙ ScatNet + ℓ1: Seg + Enh + ScatNet + PCA + ℓ1 based matching

∙ ScatNet + NN: Seg + Enh + ScatNet + PCA + neural network based matching

∙ ScatNet + RDF (proposed): Seg + Enh + ScatNet + PCA + RDF based matching

6.3.3 Implementation Details

For region covariance based saliency map extraction, 𝛼 =
√
2 is used. From all the images, the

segmentation algorithm yields a fixed-size window of 400 × 840 as the output. The second-order

ScatNet representations used in this research yield a feature representation of length 1, 097, 250 per

fingerphoto image. Due to the high dimensionality of representation, PCA [217] is applied. In our

experiments, 99% Eigen energy preserving PCA yields a succinct representation of fingerphoto

of length 95, which is provided as input to the classifier. In the RDF implementation, 𝑇 = 1000

independent decision trees are created with a bootstrap ratio of 𝑟 = 0.66. At every node in a

decision tree, 𝑚 = 1, 048 features are randomly sampled from 𝑀 = 1, 097, 250 features. With a
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Matlab 2014 implementation on a 2.66GHz dual-core processor with 16GB RAM, authenticating

a fingerphoto takes, on an average, less than two seconds.

6.3.4 Proposed Pipeline Performance Analysis

The proposed matching pipeline is validated with the ISPFD-v2 and the results are tabulated in Ta-

bles 6.3 and Figures 6-10 to 6-11. As briefly described, the comparisons are made across classifiers

and across different variations. Analyzing the results in a column-wise fashion gives comparison

of the proposed algorithm with existing algorithms. It can be distinctly observed that the Scat-

Net features learnt with a supervised classifier provide better performance as compared to other

algorithms, suggesting the importance of training a classifier for verification. ScatNet + RDF and

ScatNet + NN provide EER in the range of 2.11 − 7.53%, while ScatNet + ℓ2 distance matching

provides EER in the range 15.72 − 20.59%. Further, it can be observed that RDF performs better

than neural network under all capture variations. We also observed that there is very negligible

(almost zero) deviation in the performance of the proposed algorithm across the cross-validation

experiments. With respect to existing feature descriptors, CompCode and MCC, ScatNet + RDF

provides up to 20% improvement in EER. This can be attributed to the rich feature representation

obtained using the high-frequency information in ScatNet, and also its affine invariance property.

We next evaluate the performance across different variations - Exp. 1 and Exp. 2. From

Table 6.3, it can be inferred that the proposed matching pipeline with RDF classifier provides the

best performance across different variations. The consistently low error rates of (2.1%− 3.2%) in

the first three rows of Table 6.3 show that the proposed algorithm is robust against the variations in

background (White Outdoor and Natural Outdoor) and illumination (Natural Indoor and Natural

Outdoor). In the cross resolution matching experiments (Exp. 2) summarized in the last three

rows of Table 6.3, we can observe that matching high-resolution images (EER: 2.98%) yields

slightly better results than matching low-resolution images (EER: 5.23%). It is important to note

that different individuals have different kinds of phones and the camera resolution across different

phones also varies. This result shows that using a phone camera with lower resolution leads to a

smaller reduction in accuracy but not very significant - matching 8 MP with 13 MP fingerphotos

gives 4.74% EER while matching 5 MP with 13 MP yields 5.23% EER.
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Table 6.4: Understanding the effect of resolution on fingerphoto matching with Exp.2. The results
are reported in terms of EER (%).

Algorithm Gallery Probe
Enhancement

Without With

MCC 13 MP
5 MP 11.95 10.35
8 MP 12.61 10.02
16 MP 46.32 48.48

CompCode 13 MP
5 MP 15.69 14.32
8 MP 15.14 13.03
16 MP 13.15 10.84

ScatNet + ℓ2 13 MP
5 MP 15.44 15.72
8 MP 19.48 17.93
16 MP 26.29 17.07

ScatNet + NN 13 MP
5 MP 7.41 7.53
8 MP 5.59 5.42
16 MP 4.22 3.73

ScatNet + RDF 13 MP
5 MP 9.67 5.23
8 MP 11.71 4.74
16 MP 9.48 2.98

6.3.5 Minitiae and Non-minutiae Matching Pipeline

Analyzing the performance of MCC descriptor shows that in Exp. 1 yields poor results for outdoor

images, as minutiae extraction is highly spurious due to the capture variations. Further in Exp. 2,

the performance of MCC descriptor drops suddenly when the resolution of probe images is higher

than the gallery images. This can be attributed to the observation that MCC descriptor constructs

fixed radius cylinders around each minutia to extract its descriptor. When the resolution of the

probe image becomes higher than that of the gallery, no minutia is found within the constructed

cylinder, and hence the matching performance drops. Dynamic prediction of the cylinder parame-

ters can be performed for MCC descriptor, however, it is an independent research challenge.

The results of CompCode descriptor show that it is better at handling resolution variations as

compared to handling environmental noise. However, ScatNet + RDF is more robust and is lit-

tle affected by the capture variations. Overall, we observe that partial fingerphotos and images

with out-of-focus regions are better handled by ScatNet based matching algorithm. Similarly, us-

ing NBIS based pipeline also reduces the fingerphoto matching performance. Based on manual

obvservation, we found that nfseg has a very high failure rate in segmenting the fingerphoto fore-
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ground region. Further, mindtct is not trained for extracting minutiae from fingerphoto images,

thus, we observed more than 35% of the images to have zero minutiae extracted. Because of these

reasons, the public NBIS matcher from NIST cannot be used for matching smartphone captured

fingerphoto images.

6.3.6 Existing Algorithms

The closest work in the literature by Minaee and Wang [115] provides an EER in the range of

15− 20%. In their original research, they had shown experimental results on PolyU HRF dataset,

which has high resolution images captured in a highly controlled environment without the pres-

ence of environmental variations. Thus, evaluating their approach in a much challenging task of

matching smartphone captured fingerphoto images in a challenging ISPFD-v2 yields worse per-

formance. However, the proposed pipeline has better preprocessing stages in terms of foreground

segmnetation and enhancement catering to handle challenging capture mechanisms.

6.3.7 Effectiveness of Enhancement

We next study the importance of ridge-valley enhancement algorithm in the proposed fingerphoto

verification pipeline. While segmentation is required to remove the background noise, the impact

of enhancement in the overall matching performance is studied and summarized in Fig. 6-7 to

6-9, Table 6.4, and the ROC curves shown in Fig. 6-10 and Fig. 6-11. To set the benchmark, the

matching results of only the segmented images without any enhancement is shown for both the

experimental protocols, Exp. 1 and Exp. 2. Without any enhancement, ScatNet + RDF produces

EER in the range of 2.8− 5.6% for Exp. 1 experiments and in the range of 9.5− 11.7% for Exp. 2.

After applying the proposed enhancement algorithm, the overall matching performance improves

and the EER reduces to 2.1 − 3.2% for Exp. 1 and 3.0 − 5.2% for Exp. 2. As observed from

Fig. 6-4, the enhanced image has noisy frequencies removed, thereby, allowing better ScatNet

features to be extracted. Thus, the proposed ridge-valley enhancement in the preprocessing is

essential to improve the matching performance of ScatNet + RDF. The results also show that

the enhancement algorithm has minimal influence on CompCode features. Similarly, as shown

in Table 6.4, enhancement algorithm has minimum influence on MCC descriptor during cross-
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Figure 6-7: Analyzing the effect of enhancement on matching fingerphoto images with illumina-
tion variations.

resolution matching.

Another phenomenon is predominantly observed in Fig. 6-7 to 6-9, where CompCode fea-

tures perform better before enhancement. CompCode features aims to extract the Gabor (variant)

filter response of an image which allows the signals of a specific frequency band. During the en-

hancement phase, as image sharpening and smoothing are performed, certain frequency signals

are removed that is essential for CompCode features. On the other hand, ScatNet extracts signals

from all the frequency bands in a tree-like fashion and combines them. Therefore, enhancement

stage has little impact on the performance of ScatNet based matching. Further, ScatNet + NN pro-

vided better results than ScatNet + RDF before enhancement in the experiments with resolution

variation . While there were no theoretical evidence to explain this pattern, it is hypothesized that

the neural network architecture is robust against the proposed enhancement procedure. It can be

observed from Table 6.4 that ScatNet + NN provides almost similar performance before and after

enhancement.

6.4 Summary

This research work summarizes the major challenges associated with matching fingerphoto images

captured using a smartphone camera. A novel ScatNet based affine invariant fingerphoto represen-
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Figure 6-8: Analyzing the effect of enhancement on matching fingerphoto images with background
variations.

Figure 6-9: Analyzing the effect of enhancement on matching fingerphoto images with background
and illumination variations.

tation is proposed. Feature matching is performed using a RDF classification based approach

and compared with minutiae based and CompCode based methods. A fingerphoto segmentation

and enhancement algorithm is proposed to aid the matching process. Three different challenges

affected the performance of fingerphoto matching: (i) background variation, (ii) environmental il-
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WI vs. WO WI vs. NI WI vs. NO 

WI vs. WO WI vs. NI WI vs. NO 

(a) Without enhancement

(b) With enhancement

Figure 6-10: ROC curves illustrating the effect of the proposed enhancement algorithm on the
verification performance of different fingerphoto recognition algorithms with background and il-
lumination variations (Exp. 2): (a) without enhancement and (b) with enhancement.

lumination, and (iii) resolution of camera. To be able to study and address the different challenges,

ISPFD-v2 is created and made publicly available for research purpose. The database consists

of three sets having 304 classes from 76 subjects with 16, 800 images. The performance of the

proposed ScatNet + RDF based matching pipeline is compared with other successful methods in

literature such as neural networks, minutiae based MCC, and CompCode features. Also, two dif-

ferent enhancement algorithm such as image based enhancement and Local Binary Pattern (LBP)

based enhancement are studied and compared. The experimental results show a considerable per-

formance improvement of the proposed ScatNet + RDF algorithm over the existing algorithms in

different experimental settings.
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13 vs. 5
(a) Without enhancement

13 vs. 8 13 vs. 16

13 vs. 5 13 vs. 8 13 vs. 16
(b) With enhancement

Figure 6-11: ROC curves illustrating the effect of the proposed enhancement algorithm on the
verification performance of different fingerphoto recognition algorithms with resolution variations
(Exp. 2): (a) without enhancement and (b) with enhancement.
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Chapter 7

Conclusion and Future Research

Supported by the recent advancements in technology and data handling capacity, automated finger-

print recognition systems are extensively used in many civil and law enforcement applications such

as access control systems, financial transaction systems, and cross-border security at immigrations.

Inked fingerprint or live-scan fingerprints, used in these applications, are captured in a highly con-

trolled environment producing high clarity, continuous ridge valley patterns with very little or no

background variations. However, as we move into more uncontrolled fingerprint capture environ-

ments such as latent fingerprints or contactless capture of fingerphoto images, the obtained ridge

valley pattern is very different from the traditional capture mechanisms. The ridge flow becomes

highly discontinuous, a lot of background noise is introduced during capture, and only a partial

fingerprint is obtained while the rest is either lost or smudged during capture. These underpinned

challenges and capture variations prohibit the advocation of existing automated algorithms as the

extraction of minutiae and other features become very challenging. To be able to uniquely iden-

tify a fingerprint, it is imperative to comprehensively represent its features despite the available

noisy and incomplete ridge information. Therefore, in this dissertation we have made an attempt

to build automated solutions for matching the uncontrolled capture variants of fingerprint images

by proposing novel feature learning and representation algorithm in an unsupervised fashion.
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7.1 Conclusion

In this dissertation, we have addressed some of the challenges pertinent to uncontrolled capture of

fingerprint images. The major research contributions are discussed below:

∙ Created benchmark public dataset: The primary challenge in actively pursuing to ad-

dress the important research challenges in uncontrolled fingerprint matching, is the lack of

publicly available large scale benchmark dataset. The performance of existing algorithms

is significantly affected when the fingerprints are captured with diverse acquisition methods

(multi-session, multi-resolution, highly varying background, and with latent fingerprints). A

large amount of time and efforts of this dissertation was devoted in creating two large finger-

print datasets: (i) MOLF database with 19,200 fingerprint images from 1000 classes and (ii)

ISPFD-v2 containing 16,800 images from 300 classes. Detailed protocols are established

corresponding to various matching scenarios and the entire dataset along with their baseline

results are made publicly available for research.

∙ Latent fingerprint segmentation: Typically, the first and important stage in the match-

ing pipeline for fingerprints is the segmentation of foreground ridge like patterns from any

kind of background noise. We proposed an automated segmentation algorithm for latent

fingerprint foreground segmentation and three contributions of the proposed algorithm are:

(i) to propose visual saliency as the major contributing feature in segmentation along with

a framework for combining five different categories of features for automatic latent finger-

print segmentation, (ii) a feature selection technique using modified RELIEF formulation

for dynamically analyzing the usefulness of multiple category features for a given quality of

latent fingerprint, and (iii) a SIVV based metric to measure the effect of the segmentation

algorithm without the requirement to perform the entire matching process.

∙ Latent fingerprint minutiae extraction: The performance of an automated latent fin-

gerprint identification is limited due to imprecise automated feature (minutiae) extraction,

specifically due to noisy ridge pattern and presence of background noise. Unsupervised

feature learning paradigm is adopted to learn robust descriptors from noisy local latent fin-

gerprint patches. To learn better feature descriptors, a novel ℓ2,1 based regularization method
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was proposed on two basic architectures - autoencoders and RBM, to construct group sparse

autoencoders (GSAE) and class sparsity specific restricted Boltzmann machine (cssRBM).

Using the learnt descriptor, minutiae detection is formulated as a binary classification prob-

lem, where each local patch is classified as a minutiae or a non-minutiae containing patch.

To the best of our knowledge, this was the first automated minutiae extraction algorithm for

latent fingerprint images.

∙ Smartphone fingerphoto matching: Contactless capture of fingerprint image using smart-

phone camera highly reduces the clarity between ridge and valley patterns, thus making

the minutiae extraction very spurious. Further, during fingerphoto capture certain variations

are introduced that are not available in live-scan fingerprint images, such as highly vary-

ing background information, random environmental illumination, and changing resolution

of the smartphone camera during capture. In this dissertation, an end-to-end automated so-

lution was proposed which is robust against these capture variations in verifying fingerphoto

images. Here again, it is shown that visual saliency is a major contributing feature in seg-

menting the foreground region from the varying background. Further, as minutiae extraction

is highly spurious in fingerphoto images, a novel feature descriptor using deep scattering net-

works was proposed to represent fingerphoto images. It was experimentally observed that

high resolution fingerphoto images (as high as 16 megapixels) captured in uncontrolled out-

door illumination with random background noise eventually provided the best verification

performance, using the proposed algorithm.

7.2 Future Research

Some challenging problems that could further advance the study in matching fingerprint images

captured using uncontrolled mechanisms are discussed as follows:

∙ The latent fingerprint segmentation algorithm could be made more robust and generalizable

by learning the ridge features in an unsupervised fashion. Intuitions obtained from the pro-

posed feature selection algorithm and the classifier could be transferred to a deep learning

algorithm to obtain improved segmentation algorithm.
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∙ The MOLF dataset, created in this dissertation, consists of latent fingerprint lifted from

only plain ceramic tile surface. Characterizing different types of surfaces for segmenting

latent fingerprint images is a potential research problem. This warrants the study of latent

fingerprint lifted from multiple surfaces and the noise introduced by each type of surface

while lifting the latent fingerprint.

∙ Some forensic experts are highly experienced and skilled to mark minutia features in latent

fingerprints despite the poor quality of the ridge patterns. It is an interesting research chal-

lenge to understand the human expert cognition while working on a latent fingerprint, such

that, the important observations can be translated to an improved automated algorithm.

∙ The performance of minutiae extraction from both latent fingerprints and fingerphoto images

can be further improved by learning deeper and more local features from ridge patterns. The

proposed ℓ2,1 regularization can be applied to deep networks such as Convolution Neural

Network (CNN) to learn complex representation.

∙ Implementing the solution for fingerphoto matching as an application for Android operating

system or for iOS, is a potential direction to proceed to make the proposed solution available

as a consumer product.
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Appendix A

Results on Standard Image Datasets

To showcase the effectiveness and compare with existing (similar) approaches, we demonstrate the

results on two standard databases namely, MNIST [8] and CIFAR-10 [218].

A.1 Standard Image Datasets

The properties of the datasets are summarized in Table A.1 and a short description of the standard

image datasets are provided below:

∙ MNIST: It is a handwritten digit classification problem from gray-scale images of size 28×

28. The dataset consists of 60, 000 training images with approximately equal number of

images from each class. 50, 000 of these images are used for training while the remaining

128 are randomly held out as the validation set. Hyper-parameters of the model are tuned

using the validation set. The architecture is finetuned using the training and validation sets

combined together, whereas the hyper-parameters of the classifier are learnt only using the

validation set. Classification results are shown on a separate test set of 10, 000 images. An

architecture of [784 500 1000] network is trained. The learnt weights and momentum are

updated as explained by Srivastava et al. [179]. A 2𝜈-SVM classifier [219] with degree 5

polynomial kernel is used as the classifier. Sample images from the MNIST database are

presented in Figure A-1(b).

∙ CIFAR-10: It is a labelled subset of the 80 million tiny images dataset [220]. It contains
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Table A.1: Overview of the standard image data sets used in the experiments.

Dataset Image size Train set Test set
MNIST [8] 28× 28 gray (784) 60, 000 10, 000
CIFAR-10 [218] 32× 32 color (3072) 60, 000 10, 000

colored images corresponding to ten different object classes, and the size of the images are

32× 32. The ten classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and

truck. 6000 images are available per class, with 50, 000 images for training and 10, 000 im-

ages for testing. The dataset is split into five training sets and one testing set, each containing

10, 000 images. The testing set consists of exactly 1000 images from each class. Even though

the number of classes is not large, the images in the database are largely unconstrained in

viewpoint and occlusion, thereby making the database challenging. A network of architec-

ture [3072 500 1000 2000] is learnt for the CIFAR dataset. The remaining hyper-parameters

are the same as we used for the MNIST dataset. Sample images from the CIFAR-10 database

are presented in Figure A-1(a).

It is important to note that the protocols followed for all three databases are standard benchmark

protocols (including train-test partitioning). Therefore, the results of the proposed formulation can

be directly compared with the results available in literature.

A.2 Evaluation Metrics

The standard image datasets have different metrics designed to evaluate the performance of al-

gorithms. On MNIST dataset, error rate (%) is used as performance metric which measures the

percentage of misclassifications. For instance, an error rate of 0.68 means 68 images out of 10, 000

images are misclassified. For CIFAR-10, the accuracy (%) of correct classification is used as a

metric to evaluate the performance of algorithms.
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(a) CIFAR-10 (b) MNIST

Figure A-1: Sample images from the CIFAR-10 and MNIST databases without any preprocessing.

A.3 Results Using GSAE

In the experimental setup, each of the hidden layers is pre-trained in a greedy layer-wise fashion,

and the overall network is further fine-tuned using the training set. A 2𝜈-SVM based 10-class

classifier is trained for the respective datasets. The effectiveness of the proposed algorithm is

demonstrated with the following regularizers:

1. KLD: In the standard architecture, only KL-divergence based regularization is used during

both pre-training and fine-tuning.

2. GSAE: This utilizes only the proposed ℓ2,1 norm to introduce group-sparsity into the training

loss function. In this architecture, ℓ2,1-norm based supervision is used during both greedy

layer-wise pre-training, as well as, the overall architecture fine-tuning.

3. KLD + GSAE: This architecture shows that the proposed ℓ2,1-norm can be used to comple-

ment other existing regularization methods. In this method, greedy layer-wise pre-training is

performed using KL-divergence based sparsity regularizer (without class labels). ℓ2,1-norm

based supervision is performed only during fine-tuning. This hybrid architecture suggests

that the existing pre-trained architectures can be fine-tuned using the proposed regularizer to
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(a) Standard autoencoder (b) GSAE

Figure A-2: Visualization of the features learnt in the first hidden layer of the autoencoder on
MNIST dataset with (a) standard autoencoder using only KL-divergence based sparsity, (b) pro-
posed GSAE learning algorithm.

obtain an improvement in performance.

Table A.2: The performance of the proposed GSAE algorithm using different regularizers on the
standard image data sets. The architecture of the autoencoder used for each dataset is also provided.

Dataset Architecture KLD GSAE KLD + GSAE
MNIST (Error Rate %) [784 500 500] 1.71 1.19 1.10
CIFAR-10 (Accuracy %) [3072 2000 2000] 74.3 76.8 77.4

Table A.2 shows the results of the proposed GSAE algorithm on the three standard image

datasets along with the performance of some existing algorithms. On the MNIST dataset, apart

from the aforementioned experimental setup, we compare our best reported result along with the

best reported results of variants of autoencoder proposed in the literature. The existing vari-

ants of autoencoder algorithms that are compared are: Marginalized Denoising AutoEncoder

(MDAE) [221], Stacked AutoEncoder (SAE) [201], Stacked Denoising AutoEncoder (SDAE)

[201], Contractive AutoEncoder (CAE) [222], and Autoencoder Scoring [223]. The following

are some key observations from the set of experiments performed:

∙ In all three datasets, a similar trend can be observed across the architectures and it can

be found that KLD + GSAE provides the best performance. This confirms that the group

sparsity constraint assists in learning improved features for the classification tasks.
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∙ Figure A-2 shows the obtained hidden layer visualizations of the autoencoder trained using

KL-divergence and the proposed GSAE algorithm. It can be visually observed that GSAE

algorithm learns better descriptive features that improve the classification performance.

∙ On the MNIST dataset, Table A.3 shows comparative performance of the proposed algorithm

along with variants of autoencoder, as reported in the literature. It can be observed that the

proposed GSAE provides comparable performance with the existing autoencoder variates.

However, it is to be noted that the architectures across these variates are different. For

autoencoder variates, the architecture providing the best performance is reported.

∙ In the proposed formulation, 𝜆 controls the dominance of ℓ2,1 regularization during learn-

ing. In the literature, Vincent et. al. [201] have shown that the regularization constant could

strongly influence the learnt features. Therefore, we have performed experiments with vary-

ing 𝜆 in the range of 0 to 1 with a varying step sizes, i.e. 𝜆 = {(0.00001 : 0.00001 :

0.0001), (0.0001 : 0.0001 : 0.01), (0.01 : 0.01 : 0.1), (0.1 : 0.1 : 1)}. On the MNIST

dataset, the lowest error rate of 1.10 is obtained with 𝜆 = 0.08. Similarly, for other two

databases, the best performing results are obtained with 𝜆 = 0.09 and 𝜆 = 0.08 respectively.

With group sparsity, we observe that smaller values of 𝜆 yields better results compared to

higher values and the optimal performance is obtained for the values in the range of 0.05 -

0.1.

∙ The aim of any supervised classifier is to learn a function that maps a learnt feature rep-

resentation to a set of appropriate classes. In machine learning paradigm, Wolpert [224]

formulated the “No free lunch" theorem stating that, under noise-free environment there is

no prior for the distinction in supervised learning algorithms based on training-set error.

According to the understanding of this theorem, it is very challenging to hypothesize that

a particular supervised classifier is going to perform better than other classifiers, without

performing experimental evaluation. Hence, in comparison with 2𝜈-SVM, we evaluate the

performance of other popular classifiers, the softmax classifier, multilayer neural network

(with 2 hidden layers), and classic SVM classifier. On the MNIST dataset, the proposed

algorithm with 2𝜈-SVM classifier provides the lowest error rate of 1.10 which is at least

0.75% better than other three classifiers.
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Table A.3: Comparing the performance of different variates of autoencoder based algorithms and
the proposed algorithm, GSAE, on the MNIST dataset [8].

Algorithm Error %
MDAE [221] 1.29
SAE [201] 1.40
SDAE [201] 1.28
CAE [222] 1.14
Autoencoder Scoring [223] 1.27
Proposed 1.10

It is to be noted that state-of-the-art performance for the datasets used in this research are:

(i) MNIST is 0.21%, obtained using ConvNet architecture and dropconnect regularization [184],

(ii) CIFAR-10 is 91.78%, obtained using deeply supervised ConvNet architecture [225], and (iii)

SVHN is 1.92%, obtained using deeply supervised ConvNet architecture [225]. We would like

to mention that the main motivation is to show that adding group sparse regularizer can improve

the performance of stacked autoencoder based feature representation. The results presented in

this section showcase that ℓ2,1 norm, solved via majorization-minimization approach, helps in

improving the classifier performance.

A.4 Results using cssDBM and cssDBN

We demonstrate the results of the proposed supervised formulations with three different regular-

izers: standard (ℓ2-norm), dropout, and dropconnect. As explained in Section 5.4.4, the proposed

class sparsity signature is applied in continuation with other regularizers on the weight matrix. The

results are compared with the respective DBM and DBN architectures without the class sparsity

signatures.

∙ MNIST: Table A.4 summarizes the error (%) obtained on the MNIST database using the

proposed and existing DBM and DBN formulations respectively. The best error of 0.53%

is obtained using DBM and 2𝜈-SVM classifier, with dropout + class sparsity regularization.

Creating sparse hidden representation using dropout and further constraining them using a

class label based weighted ℓ2 norm helps the architecture learn better discriminative features.
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This validates our initial hypothesis that the sparsity signature at the hidden layer for a given

class would be similar. A similar architecture without using class sparsity yields an error

rate of 0.78%. It can be observed that on all the architectures, under all the configurations,

class sparsity improves the classification performance. As expected, the worst performing

configuration with 1.19% error rate is DBN with only ℓ2 norm, without class sparsity, and

softmax classifier. Figure A-3 shows sample visualizations learnt using the standard RBM

and the proposed RBM. It can be visually observed that the features of cssRBM are more

informative than standard RBM.

∙ CIFAR-10: Similar to MNIST database, Table A.5 summarizes the results of DBM and

DBN with different regularizes, with and without class sparsity signatures and different clas-

sifiers. Regardless of the regularization utilized, the proposed cssRBM based architectures

outperform the traditional DBM and DBN on the CIFAR-10 database. The best performance

of 82.9% is achieved by cssDBN using dropconnect [184] followed by cssDBM at 82.8%

with dropout/dropconnect regularization. The best accuracies achieved by the traditional

DBM and DBN architectures are 79.5% and 75.8% respectively. We also observe that 2𝜈-

Table A.4: Classification error on the MNIST database obtained using Deep Boltzmann Machines
and Deep Belief Networks. The table shows the error (%) of the classifier, where 0.53 means 53
out of 10, 000 images are misclassified.

Algorithm Regularization Class Sparsity Classifiers
Signature Softmax 2𝜈-SVM

Standard (ℓ2-norm)
without css 0.95 0.94

with css 0.87 0.83
Deep Boltzmann

Dropout
without css 0.79 0.78

Machines with css 0.61 0.53

Dropconnect
without css 0.87 0.79

with css 0.67 0.58

Standard (ℓ2-norm)
without css 1.19 1.03

with css 1.02 0.95
Deep Belief

Dropout
without css 0.92 0.89

Networks with css 0.89 0.81

Dropconnect
without css 0.95 0.90

with css 0.90 0.82
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(a) Standard RBM (b) cssRBM

Figure A-3: Sample representation showing the features learnt in MNIST database using (a) stan-
dard RBM and (b) proposed cssRBM.

Table A.5: Results on CIFAR-10 database using Deep Boltzmann Machines and Deep Belief Net-
works. The table shows the matching accuracy (%) of the classifier.

Algorithm Regularization Class Sparsity Classifiers
Signature Softmax 2𝜈-SVM

Standard (ℓ2-norm)
without css 75.2 76.1

with css 77.9 79.3
Deep Boltzmann

Dropout
without css 78.6 79.5

Machines with css 79.5 82.8

Dropconnect
without css 77.2 77.4

with css 79.9 82.8

Standard (ℓ2-norm)
without css 74.8 75.3

with css 77.6 79.2
Deep Belief

Dropout
without css 75.4 75.8

Networks with css 79.5 82.6

Dropconnect
without css 74.9 75.5

with css 79.8 82.9

SVM classifier performs better than the softmax classifier. The best performance achieved by

the softmax classifier is 79.9% which is approximately 3% lower than the results of 2𝜈-SVM

classifier. Regularization yields noticeable improvements in the results where the traditional

versions of the DBM and DBN architectures are only able to achieve up to 76.1% accuracy.
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∙ Comparison with State-of-the-art Algorithms: The state-of-the-art performance on these

two datasets are: (i) 0.21% on the MNIST database obtained using Convolutional Neural

Network (ConvNet) architecture with dropconnect regularization [184] and (ii) 91.78% on

the CIFAR-10 obtained using deeply supervised nets based on ConvNet architecture [225].

It is to be noted that most of the best performing algorithms on these databases use deep

ConvNet based architectures. In this research, we have proposed the class sparse regular-

ization approach for RBM based deep networks: DBN and DBM. We have compared the

performance of these architectures, with and without the application of class sparsity and

experimentally showed an improved performance with class sparsity.
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