

DLPaper2Code: Auto-generation of Code from Deep Learning Research Papers

<u>Anush Sankaran¹, Naveen Panwar¹, Shreya Khare¹, Senthil Mani¹, Akshay Sethi², Rahul Aralikatte¹, Neelamadhav Gantayat¹</u>

¹IBM Research AI, ²IIIT Delhi, India

Contact Email: anussank@in.ibm.com

Motivation

- In NIPS 2016, ~685/2500 were in "Deep Learning or • Neural Networks"
- Only 101/567 (~18%) papers made their source implementation available in the open source domain

Three highly referred papers in "Image Captioning"

- Show and Tell: Original implementation available in Theano
- **NeuralTalk2**: Original implementation available in Torch
- **LRCN**: Implementation available in Caffe

Aim: Reproducibility of existing research works is a challenge. Can we automatically parse papers to generate code?

Proposed Approach

Experimental Results

DL Flow Image classification using VGG19 (fc2) features

	Bin	ary Classi	fier	Five-class Classifier				
Observation	Train	Val	Test	Train	Val	Test		
#DataPoints	18,592	6,197	6,198	1,720	573	574		
Naive Bayes	77.29%	64.39%	62.56%	40.42%	54.30%	52.84%		
Decision Tree	99.96%	76.67%	74.35%	99.65%	50.57%	49.13%		
Logistic Regression	99.96%	86.17%	85.27%	99.65%	69.98%	68.47%		
RDF	99.96%	83.72%	82.94%	99.65%	68.72%	66.02%		
SVM (RBF Kernel)	99.96%	86.89%	85.25%	99.65%	72.94%	69.68%		
Neural Network	99.96%	87.93%	86.25%	100%	74.93%	71.60%		

Simulated Dataset

- Manually define a grammar for generating trainable. deep learning models along with hyper-parameters
- 216,000 models generated with Keras and Caffe visualizations, Keras and Caffe code
- 5 40 layers deep models with 3,000 layers per depth

Current Layer	Dense	Conv2D	Flatten	Dropout	Maxpool	AvgPool	Concat	Embed	RNN	RNN (seq)	LSTM	LSTM (seq)
Dense	~						~	~				
Conv2d		~	✓	~	~	~	~					
Flatten	~			~			~	v				
Dropout	Same as previous layer											
MaxPool		~	~	~	~	v	~					
AvgPool		~	~	~	~	~	~					
Concat	If input is one dimensional, same as Dense layer; else same as previous layer											
Embed			~	~			~	~	~	~	~	~
RNN	~			~			~	~				
RNN (seq)			~	~			~		•	~	~	~
LSTM	~			~			~	v				
LSTM (seq)			~	~			~		~	~	~	~

71.5% accurate in choosing the type of image and 93% accurate in extracting flow information

Discussion & Ongoing Work

- Downloaded 5000 papers from arXiv • Automatically extract design flow by proposed approach
- Enable crowdsourced contribution using a intuitive drag-and-drop framework

- Extend for other image model types
- Extract hyper-parameter information
- Better fusion of table and image content
- Extract information from descriptive text